Loading...
Search for: gel-layers
0.008 seconds

    Effects of ion-exchange and hydrolysis mechanisms on lead silicate glass corrosion

    , Article Corrosion ; Volume 68, Issue 9 , September , 2012 , Pages 793-800 ; 00109312 (ISSN) Ali Rahimi, R ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    Corrosion of lead silicate glass (LSG) contacting 0.5 M aqueous nitric acid (HNO 3) was investigated via scanning electron microscopy, energy-dispersive spectroscopy, inductively coupled plasma analysis, and weight-loss measurement to determine the respective contributions of the ion-exchange vs. the hydrolysis reactions. The LSG having X M ≡ Pb+K+Na/Si mole ratios of less than 0.7 showed very little weight loss with no Si network deterioration. At X M > 0.7, the mechanism changed into the hydrolysis, which caused the formation of a networkless gel layer resting at the solid/liquid interface. Addition of titania (TiO 2) and zirconia (ZrO 2) had disparate effects: X M < 0.7 improved corrosion... 

    Hydrolysis kinetics of lead silicate glass in acid solution

    , Article Journal of Nuclear Materials ; Volume 389, Issue 3 , 2009 , Pages 427-431 ; 00223115 (ISSN) Rahimi, R. A ; Sadrnezhaad, Kh ; Raisali, G ; Hamidi, A ; Sharif University of Technology
    2009
    Abstract
    Hydrolysis kinetics of the lead silicate glass (LSG) with 40 mol% PbO in 0.5 N HNO3 aqueous acid solution was investigated. The surface morphology and the gel layer thickness were studied by scanning electron microscopy (SEM) micrographs. Energy dispersive X-ray spectroscopy (EDS) and inductively coupled plasma spectroscopy (ICP) were used to determine the composition of the gel layer and the aqueous solution, respectively. The silicon content of the dissolution products was determined by using weight-loss data and compositions of the gel layer and the solution. The kinetic parameters were determined using the shrinking-core-model (SCM) for rate controlling step. The activation energy...