Loading...
Search for: free-vibration
0.011 seconds
Total 141 records

    Free vibration analysis of joined conical shells: Analytical and experimental study

    , Article Thin-Walled Structures ; Vol. 85, issue , December , 2014 , p. 350-358 Shakouri, M ; Kouchakzadeh, M. A ; Sharif University of Technology
    Abstract
    Natural frequencies and mode shapes of two joined isotropic conical shells are presented in this study. The joined conical shells can be considered as the general case for joined cylindrical-conical shells, joined cylinder-plates or cone-plates, conical and cylindrical shells with stepped thicknesses and also annular plates. Governing equations are obtained using thin-walled shallow shell theory of Donnell and Hamilton's principle. The continuity conditions at the joining section of the cones are appropriate expressions among stress resultants and deformations. The equations are solved assuming trigonometric response in circumferential and series solution in meridional directions and all... 

    A numerical investigation on the free vibration of carbon nanopeapods as variable frequency beam resonators

    , Article Modern Physics Letters B ; Volume 27, Issue 21 , August , 2013 ; 02179849 (ISSN) Firouz Abadi, R. D ; Alavi, S. M ; Sharif University of Technology
    2013
    Abstract
    This study aims at investigation of the resonance frequencies of carbon nanopeapods constructed by a single wall carbon nanotube and encapsulated buckyball molecules (C60). A nanopeapod can be used as a nanoscale variable frequency beam resonator according to the number and positions of the encapsulated fullerenes. Using the molecular structural mechanics method the covalence bonds are simulated by equivalent beam elements and the van der Waal interactions between the buckyballs and nanotube are modeled as linear springs. Also, an equivalent beam model is proposed for the nanopeapod with sectional properties which are obtained by the molecular structural mechanics model. The beam-like modes... 

    Free vibration analysis of nanocones using a nonlocal continuum model

    , Article Physics Letters, Section A: General, Atomic and Solid State Physics ; Volume 375, Issue 41 , 2011 , Pages 3593-3598 ; 03759601 (ISSN) Firouz Abadi, R. D ; Fotouhi, M. M ; Haddadpour, H ; Sharif University of Technology
    2011
    Abstract
    This Letter aims at the investigation of free-vibration properties of nanocones based on a nonlocal continuum shell model. A novel approach is used for derivation of the governing equations of motion and the Galerkin technique is used to obtain the natural frequencies of vibrations. The effects of small-scale and geometrical parameters of the nanocone on the natural frequencies are studied and some conclusions are drawn  

    Analytical investigation on axisymmetric free vibrations of moderately thick circular functionally graded plate integrated with piezoelectric layers

    , Article Journal of Mechanical Science and Technology ; Volume 22, Issue 6 , 2008 , Pages 1058-1072 ; 1738494X (ISSN) Ebrahimi, F ; Rastgoo, A ; Kargarnovin, M. H ; Sharif University of Technology
    2008
    Abstract
    In this paper, a free vibration analysis of moderately thick circular functionally graded (FG) plate integrated with two thin piezoelectric (PZT4) layers is presented based on Mindlin plate theory. The material properties of the FG core plate are assumed to be graded in the thickness direction, while the distribution of electric potential field along the thickness of piezoelectric layers is simulated by sinusoidal function. The differential equations of motion are solved analytically for two boundary conditions of the plate: clamped edge and simply supported edge. The analytical solution is validated by comparing the obtained resonant frequencies with those of an isotropic host plate. The... 

    Structural similitude in free vibration of orthogonally stiffened cylindrical shells

    , Article Thin-Walled Structures ; Volume 47, Issue 11 , 2009 , Pages 1316-1330 ; 02638231 (ISSN) Torkamani, Sh ; Navazi, H. M ; Jafari, A. A ; Bagheri, M ; Sharif University of Technology
    2009
    Abstract
    In this paper, the necessary similarity conditions, or scaling laws, for free vibrations of orthogonally stiffened cylindrical shells are developed using the similitude theory. The Donnell-type nonlinear strain-displacement relations along with the smearing theory are used to model the structure. Then the principle of virtual work is used to analyze the free vibration of the stiffened shell. After non-dimensionalizing the derived formulations, the scaling laws are developed, using the similitude theory. Then, different examples are solved to validate the scaling laws numerically and experimentally. The obtained results show the effectiveness of the derived formulations. © 2009 Elsevier Ltd.... 

    Identification of nonlinear model for rotary high aspect ratio flexible blade using free vibration response

    , Article Alexandria Engineering Journal ; Volume 59, Issue 4 , August , 2020 , Pages 2131-2139 Mahariq, I ; Kavyanpoor, M ; Ghalandari, M ; Nazari, M. A ; Bui, D. T ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    Nonlinear identification of a narrow cantilever blade undergoing free vibration was studied. In the absence of forced excitation and because of general data deficiency of this system, the current identification methods cannot be applied with sufficient accuracy. A new identification approach was introduced in the present study based on nonlinear free vibration decay. Nonlinear free response of the presented system is determined by the coupling of generalized variation iteration and the modified differential transformation methods. The comparisons between the experiments and calculations is highlighted the good accuracy of the identified nonlinear model. © 2020 Faculty of Engineering,... 

    An analytical solution for free vibration of elastically restrained timoshenko beam on an arbitrary variable winkler foundation and under axial load

    , Article Latin American Journal of Solids and Structures ; Volume 12, Issue 13 , 2015 , Pages 2417-2438 ; 16797817 (ISSN) Ghannadiasl, A ; Mofid, M ; Sharif University of Technology
    Abstract
    Natural frequencies are important dynamic characteristics of a structure where they are required for the forced vibration analysis and solution of resonant response. Therefore, the exact solution to free vibration of elastically restrained Timoshenko beam on an arbitrary variable elastic foundation using Green Function is presented in this paper. An accurate and direct modeling technique is introduced for modeling uniform Timoshenko beam with arbitrary boundary conditions. The applied method is based on the Green Function. Thus, the effect of the translational along with rotational support flexibilities, as well as, the elastic coefficient of Winkler foundation and other parameters are... 

    In-plane free vibrations of annular elliptic and circular elastic plates of non-uniform thickness under classical boundary conditions

    , Article International Review of Mechanical Engineering ; Volume 4, Issue 1 , 2010 , Pages 112-119 ; 19708734 (ISSN) Hassani, A ; Hojjati, M. H ; Fathi, A. R ; Sharif University of Technology
    Abstract
    This paper presents a formulation for in-plane modal characteristics of non-uniform thickness annular elliptic and circular plates for all classical boundary conditions. The investigations are performed for elastic and isotropic annular elliptic plates on the basis of two- dimensional linear plane stress theory of elasticity. Two-dimensional boundary characteristic orthogonal polynomials (BCOP) are used in the Rayleigh-Ritz method to obtain the natural frequencies and associated mode shapes. The proposed method, not only can find solution for those simple cases of annular circular plates available in literature as a simplified case study, but also it finds some natural frequencies which can... 

    Free vibration analysis of a nonlinear beam using homotopy and modified lindstedt-poincare methods

    , Article Journal of Solid Mechanics ; Volume 1, Issue 1 , Volume 1, Issue 1 , 2009 , Pages 29-36 ; 20083505 (ISSN) Ahmadian, M. T ; Mojahedi, M ; Moeenfard, H ; Sharif University of Technology
    Abstract
    In this paper, homotopy perturbation and modified Lindstedt-Poincare methods are employed for nonlinear free vibrational analysis of simply supported and double-clamped beams subjected to axial loads. Mid-plane stretching effect has also been accounted in the model. Galerkin's decomposition technique is implemented to convert the dimensionless equation of the motion to nonlinear ordinary differential equation. Homotopy and modified Lindstedt-Poincare (HPM) are applied to find analytic expressions for nonlinear natural frequencies of the beams. Effects of design parameters such as axial load and slenderness ratio are investigated. The analytic expressions are valid for a wide range of... 

    Vibration analysis of a rotating magnetorheological tapered sandwich beam

    , Article International Journal of Mechanical Sciences ; Volume 122 , 2017 , Pages 308-317 ; 00207403 (ISSN) Navazi, H. M ; Bornassi, S ; Haddadpour, H ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    This paper investigates the free vibration analysis of a doubly tapered magnetorheological rotating sandwich beam based on the Euler-Bernoulli theory. The beam is made of a magnetorheological elastomer core sandwiched between two elastic layers. Through energy approach the kinetic and potential energies of the system are written and using the Lagrange equation the discretized form of the governing equation is derived based on the Ritz method. The free vibration analysis is carried out to obtain the natural frequency and the corresponding loss factor of the beam. Finally, after validating the formulation in order to provide a deep insight the effects of different parameters on the free... 

    Free vibrations and stability of high-speed rotating carbon nanotubes partially resting on Winkler foundations

    , Article Composite Structures ; Volume 126 , 2015 , Pages 52-61 ; 02638223 (ISSN) Torkaman Asadi, M. A ; Rahmanian, M ; Firouz-Abadi, R. D ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    In the present study, free vibrations and stability of rotating single walled carbon nanotubes (SWCNT) is investigated by nonlocal theory of elasticity; while the CNT is partially resting on an elastic foundation. The governing equations of motion are presented by using Love's shell assumptions. An exact series expansion method of solution is employed and very accurate results are obtained. Some parameter studies including the effects of rotating speed, foundation stiffness, slenderness ratio and nonlocal parameter on the natural frequency and stability margins of the current model are studied. The studies show that rotation rates and foundation elasticity can contribute significantly in the... 

    Free vibration analysis of general stepped circular plates with internal elastic ring support resting on Winkler foundation by green function method

    , Article Mechanics Based Design of Structures and Machines ; Volume 44, Issue 3 , 2016 , Pages 212-230 ; 15397734 (ISSN) Ghannadiasl, A ; Mofid, M ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    Natural frequencies are important dynamic characteristics of a structure. Therefore, the exact solution pertaining to free vibration of stepped circular plate elastically restrained against rotation, translation, and internal elastic ring support resting on an arbitrary variable elastic foundation using Green Function is presented in this paper. Thus, an accurate and direct modeling technique is introduced for modeling stepped circular plate on an arbitrary variable elastic foundation with arbitrary boundary conditions and internal elastic ring support. The effect of the translational along with rotational support flexibilities, as well as, the elastic coefficient of Winkler foundation and... 

    Thermo-mechanical vibration of rotating axially functionally graded nonlocal Timoshenko beam

    , Article Applied Physics A: Materials Science and Processing ; Volume 123, Issue 1 , 2017 ; 09478396 (ISSN) Azimi, M ; Mirjavadi, S. S ; Shafiei, N ; Hamouda, A. M. S ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    The free vibration analysis of rotating axially functionally graded nanobeams under an in-plane nonlinear thermal loading is provided for the first time in this paper. The formulations are based on Timoshenko beam theory through Hamilton’s principle. The small-scale effect has been considered using the nonlocal Eringen’s elasticity theory. Then, the governing equations are solved by generalized differential quadrature method. It is supposed that the thermal distribution is considered as nonlinear, material properties are temperature dependent, and the power-law form is the basis of the variation of the material properties through the axial of beam. Free vibration frequencies obtained are... 

    Free vibration analysis of sandwich conical shells with fractional viscoelastic core

    , Article Composite Structures ; Volume 214 , 2019 , Pages 62-72 ; 02638223 (ISSN) Permoon, M. R ; Shakouri, M ; Haddadpour, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    The vibration characteristics, including fundamental frequencies and loss factors, of a sandwich conical shell with constrained viscoelastic layer is presented. The mechanical properties of viscoelastic core is modeled using Zener fractional order model. The equations of motion are derived employing Donnell representation of classical shell theory and solved using Raighly-Ritz method. The results are compared with other investigations and the effects of geometric parameters including the length to radius, radius to thickness and core to facing thickness on fundamental frequencies and loss factors are studied. © 2019 Elsevier Ltd  

    Prediction of in-plane elastic properties of graphene in the framework of first strain gradient theory

    , Article Meccanica ; Volume 54, Issue 1-2 , 2019 , Pages 299-310 ; 00256455 (ISSN) Hassanpour, S ; Mehralian, F ; Dehghani Firouz Abadi, R ; Borhan Panah, M. R ; Rahmanian, M ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In the present study, the in-plane elastic stiffness coefficients of graphene within the framework of first strain gradient theory are calculated on the basis of an accurate molecular mechanics model. To this end, a Wigner–Seitz primitive cell is adopted. Additionally, the first strain gradient theory for graphene with trigonal crystal system is formulated and the relation between elastic stiffness coefficients and molecular mechanics parameters are calculated. Thus, the ongoing research challenge on providing the accurate mechanical properties of graphene is addressed herein. Using results obtained, the in-plane free vibration of graphene is studied and a detailed numerical investigation is... 

    Prediction of in-plane elastic properties of graphene in the framework of first strain gradient theory

    , Article Meccanica ; Volume 54, Issue 1-2 , 2019 , Pages 299-310 ; 00256455 (ISSN) Hassanpour, S ; Mehralian, F ; Dehghani Firouz-Abadi, R ; Borhan Panah, M. R ; Rahmanian, M ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In the present study, the in-plane elastic stiffness coefficients of graphene within the framework of first strain gradient theory are calculated on the basis of an accurate molecular mechanics model. To this end, a Wigner–Seitz primitive cell is adopted. Additionally, the first strain gradient theory for graphene with trigonal crystal system is formulated and the relation between elastic stiffness coefficients and molecular mechanics parameters are calculated. Thus, the ongoing research challenge on providing the accurate mechanical properties of graphene is addressed herein. Using results obtained, the in-plane free vibration of graphene is studied and a detailed numerical investigation is... 

    Scaled down models for free vibration analysis of orthogonally stiffened cylindrical shells using similitude theory

    , Article 26th Congress of International Council of the Aeronautical Sciences 2008, ICAS 2008, Anchorage, AK, 14 September 2008 through 19 September 2008 ; Volume 2 , 2008 , Pages 3458-3469 ; 9781605607153 (ISBN) Torkamani, S ; Jafari, A. A ; Navazi, H. M ; Sharif University of Technology
    2008
    Abstract
    In this paper, the necessary similarity conditions, or scaling laws, for free vibrations of orthogonally stiffened cylindrical shells are developed using similitude theory. The Donnelltype nonlinear strain-displacement relations along with smearing theory are used to model the structure. Then the principle of virtual work is used to analyze the free vibration of the stiffened shell. After nondimensionalizing the derived formulations, the scaling laws are developed, using similitude theory. Then, different examples are solved to validate the scaling laws numerically and experimentally. The obtained results show the effectiveness of the derived formulations  

    Vibration Analysis of Edge Cracked Timoshenko Beam with Continuous Crack Model

    , M.Sc. Thesis Sharif University of Technology Heydari, Mahdi (Author) ; Behzad, Mehdi (Supervisor)
    Abstract
    Structural defects such as cracks may be produced in structures and machineries under fatigue load operating conditions. The presence of crack can lead to catastrophic failures in certain conditions. The occurrence of cracks affects the dynamic and vibration behavior of the structure considerably. These vibrations can be used for identifying the cracks and appropriate actions can be taken to prevent more damage to the system. Therefore, in this thesis vibration analysis of a Timoshenko beam with a vertical and horizontal crack has been considered. A continuous model for vibration analysis of a beam with an open edge crack including the effects of shear deformation and rotary inertia has been... 

    Investigation of Stability and Electromechanical Properties of a Nano Capacitor Made of Two Graphene Sheets

    , M.Sc. Thesis Sharif University of Technology Borhanpanah Mooshaki, Mohammad Reza (Author) ; Dehghani Firouz-Abadi, Rouhollah (Supervisor)
    Abstract
    Investigation of electrostatic properties of a nano capacitor made of graphene sheets, is the aim of current research. This nano capacitor is made of two adjacent parallel gr¬aphene sheets. Applying a voltage make an electric field between the sheets, which attracts the sheets together. This change in geometry, affects the electric field between sheets, therefore, the sheet's deformation and the electric field between them are coupled to each other. For modeling the deformation of the sheets, molecular dynamics analysis is employed. The electrostatic equations are used for modeling the electric field. The electric field is assumed to be static in this research, which means that the... 

    Nonlinear free vibration of conservative oscillators with inertia and static type cubic nonlinearities using homotopy analysis method

    , Article Journal of Sound and Vibration ; Volume 316, Issue 1-5 , 2008 , Pages 263-273 ; 0022460X (ISSN) Hoseini, S. H ; Pirbodaghi, T ; Asghari, M ; Farrahi, G. H ; Ahmadian, M. T ; Sharif University of Technology
    2008
    Abstract
    In this study, an accurate analytical solution for the nonlinear free vibration of a conservative oscillator with inertia and static type cubic nonlinearities is derived. This solution has been obtained using homotopy analysis method (HAM). Then, homotopy Pade technique is applied to accelerate the convergence rate of the series solution. This study shows that the HAM leads to an accurate analytical solution, which is valid for a wide range of considered system parameters. Unlike the other analytical methods, HAM can control and adjust the convergence region and rate of the approximation series solution. The excellent accuracy of the current results is demonstrated by comparing with the...