Loading...
Search for: flowthrough
0.012 seconds

    How particle shape affects the flow through granular materials

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 85, Issue 3 , 2012 ; 15393755 (ISSN) Nemati Hayati, A ; Ahmadi, M. M ; Mohammadi, S
    2012
    Abstract
    Flow through the pores of granular materials has many instances in practice. Therefore, it is interesting to realize how some parameters, such as the shape of the particles affect the passing flow. Following the recent mathematical theory proposed by the authors, this paper deals with the issue of how tortuosity and permeability are influenced by the particle shape. Comparison of the results with the experimental data reveals the competency of the theory in predicting the impact of particle geometry  

    Computational fluid-dynamics-based analysis of a ball valve performance in the presence of cavitation

    , Article Journal of Engineering Thermophysics ; Vol. 23, issue. 1 , January , 2014 , p. 27-38 Tabrizi, A. S ; Asadi, M ; Xie, G ; Lorenzini, G ; Biserni, C ; Sharif University of Technology
    Abstract
    In this paper, the ball valve performance is numerically simulated using an unstructured CFD (Computational Fluid Dynamics) code based on the finite volume method. Navier-Stokes equations in addition to a transport equation for the vapor volume fraction were coupled in the RANS solver. Separation is modeled very well with a modification of turbulent viscosity. The results of CFD calculations of flow through a ball valve, based on the concept of experimental data, are described and analyzed. Comparison of the flow pattern at several opening angles is investigated. Pressure drop behind the ball valve and formation of the vortex flow downstream the valve section are also discussed. As the... 

    Mixing enhancement of two gases in a microchannel using DSMC

    , Article Applied Mechanics and Materials, Dubai ; Volume 307 , 2013 , Pages 166-169 ; 16609336 (ISSN) ; 9783037856598 (ISBN) Darbandi, M ; Lakzian, E ; Sharif University of Technology
    2013
    Abstract
    In high Knudsen number flow regimes microgas flow analysis may not be performed accurately using the classical CFD methods. Alternatively, the gas flow through micro-geometries can be investigated reliably using the direct simulation Monte Carlo (DSMC) method. Our concern in this paper is to use DSMC to study the mixing of two gases in entering simultaneously into a microchannel. The mixing process is assumed to be complete when the mass composition of each species deviates by no more than ±1% from its equilibrium composition. To enhance the mixing process, we focus on the effects of inlet-outlet pressure difference and the pressure ratios of the two incoming CO and N2 streams on the mixing... 

    CFD simulation of natural draught cooling tower wind-covering

    , Article Applied Mechanics and Materials, Dubai ; Volume 307 , 2013 , Pages 279-284 ; 16609336 (ISSN) ; 9783037856598 (ISBN) Darbandi, M ; Salemkar, H ; Behrouzifar, A ; Abrar, B ; Sharif University of Technology
    2013
    Abstract
    Past experiences have shown that a local wind can considerably affect the performances of powerplant cooling towers and factory chimneys. In thermal powerplants, the performance of Rankin cycles would reduce if the temperature of its condenser increases. This issue is very important to powerplants located in countries with strong local winds. To remedy the malperformance of a natural cooling tower in windy conditions, it is required to understand the physics of flow around cooling towers more clearly. One adverse physics is known as the wind covering problem which can drastically affect the natural draught through a cooling tower in windy conditions. In this paper, we focus on wind-covering... 

    Exergy analysis of Airlift Systems: Experimental approach

    , Article International Journal of Exergy ; Volume 8, Issue 4 , 2011 , Pages 407-424 ; 17428297 (ISSN) Hanafizadeh, P ; Ghanbarzadeh, S ; Saidi, M. H ; Sharif University of Technology
    Abstract
    Airlift Systems (ALS) are widely used in various industrial applications. As the main part of the flow through ALS's upriser pipe, is formed by gas-liquid flow, the analysis of such systems will be accompanied by problems of two-phase flow modelling. Several effective variables are involved in ALS; thereupon comprehensive method is needed to consider these parameters. Exergy analysis can be considered as a simple solution for the realisation of the preferred domain of ALS's operation. Here, this method has been proposed to examine the performance of ALS. Based on thermodynamic principles, an analytical model has been implemented in each phase and the respective experimental data have been... 

    Impact of swimming gyrotactic microorganisms and viscous dissipation on nanoparticles flow through a permeable medium: a numerical assessment

    , Article Journal of Nanomaterials ; Volume 2022 , 2022 ; 16874110 (ISSN) Ahmad, S ; Younis, J ; Ali, K ; Rizwan, M ; Ashraf, M ; Abd El Salam, M. A ; Sharif University of Technology
    Hindawi Limited  2022
    Abstract
    In this paper, heat and mass transportation flow of swimming gyrotactic microorganisms (microbes) and solid nanoparticles under the viscous dissipation effect is investigated. The flow model PDEs are renovated with ordinary ones using suitable boundary layer approximations. The system governing the flow model dimensionless equations as well as boundary conditions is numerically treated with the SOR (successive over relaxation) technique. The flow, heat, and mass transport characteristics are examined against the prime parameters. A comparison is examined to be in a good agreement with the earlier results. It is found here that flow and thermal characteristics of the problem are substantially... 

    Pore scale study of permeability and tortuosity for flow through particulate media using Lattice Boltzmann method

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 35, Issue 8 , 2011 , Pages 886-901 ; 03639061 (ISSN) Ghassemi, A ; Pak, A ; Sharif University of Technology
    2011
    Abstract
    In this paper, Lattice Boltzmann method (LBM) has been used to study the effects of permeability and tortuosity on flow through saturated particulate media and identify the relationships between permeability and tortuosity with other parameters such as particles diameter, grain specific surface, and porosity. LBM is a simple kinematic model that can incorporate the essential physics of microscopic and mesoscopic processes involved in flow through granular soils. The obtained results indicate that the 2D LB model, due to its inherent theoretical advantages, is capable of demonstrating that the porosity and specific surface are the most influential parameters in determining the intrinsic... 

    A molecular dynamics study of fluid flows through slit-like nanochannels using two different driving systems

    , Article ASME 2010 8th International Conference on Nanochannels, Microchannels, and Minichannels Collocated with 3rd Joint US-European Fluids Engineering Summer Meeting, ICNMM2010, 1 August 2010 through 5 August 2010 ; Issue PARTS A AND B , 2010 , Pages 1029-1033 Darbandi, M ; Khaledi Alidusti, R ; Sabouri, M ; Abbasi, H. R ; Sharif University of Technology
    Abstract
    The Poiseuille flow through slit-like nanochannels is investigated using the nonequilibrium molecular dynamics simulations. To drive a dense flow through the channel, we use two self-adjusting vertical plates strategy. These plates force the liquid to flow through the nanochannel under adjustable inlet and outlet boundary conditions. Comparing with the dual-control-volume grand-canonical molecular dynamics method, the current strategy provides many advantages. The current strategy does not need particle insertion and deletion, therefore, the system dynamics would not be affected at all. Moreover, the number of particles in the simulation system is fixed due to inserting the two... 

    Effect of different configurations on 3-D analysis of flow through stay vanes And guide vanes of a francis turbine

    , Article Scientia Iranica ; Volume 17, Issue 6 B , NOVEMBER-DECEMBER , 2010 , Pages 419-432 ; 10263098 (ISSN) Dadfar, R ; Firoozabadi, B ; Ahmadi, G ; Sharif University of Technology
    2010
    Abstract
    Stay and guide vanes (distributor) are essential parts of a turbine. They are used to control the flow rate and to appropriately transfer the flow momentum to the runner. In this work, flow through the distributor is analyzed. For various Boundary Conditions (BC) and different configurations, threedimensional flows in the distributor of a Francis turbine are evaluated and compared with each other. The numerical simulations were carried out using Fluent software and the results were validated with a GAMM Francis turbine, where the geometry and detailed best efficiency measurements were publically available. In these simulations, the flow was assumed to be steady and the effect of turbulence... 

    Flow past confined nano cylinder in microscale channels

    , Article Proceedings of the 7th International Conference on Nanochannels, Microchannels, and Minichannels 2009, ICNMM2009, 22 June 2009 through 24 June 2009, Pohang ; Issue PART A , 2009 , Pages 433-440 ; 9780791843499 (ISBN) Darbandi, M ; Setayeshgar, A ; Sharif University of Technology
    Abstract
    Simulations of flow through microchannels over nano particles are widely encountered in solid particle transportation. In these simulations, the rarefaction phenomenon will affect the microflow behavior and subsequently the aerodynamics coefficients such as the drag coefficient derived for the suspended particles in the flow stream. This is why we use the Lattice Boltzmann method LBM to study the flow past a confined cylinder placed in a microchannel. The LBM is a mesoscopic method capable of solving flow in macro and micro scales. Applying the Maxwellian scattering kernel, the slip velocity is modeled on the channel and cylinder walls appropriately. To validate our formulations, we firstly... 

    Fracture characterizing and modeling of a porous fractured carbonate reservoir

    , Article Society of Petroleum Engineers - SPE/EAGE Reservoir Characterization and Simulation Conference 2009 - Overcoming Modeling Challenges to Optimize Recovery, 19 October 2009 through 21 October 2009 ; Volume 1 , 2009 , Pages 303-319 ; 9781615677443 (ISBN) Dashti, R ; Bagheri, M. B ; Ulhaq, S ; Sharif University of Technology
    Abstract
    Anisotropy and heterogeneity in reservoir properties introduce challenges during the development of hydrocarbon reservoirs in naturally fractured reservoirs. In reservoir simulations, grid-block properties are frequently assigned to obtain reasonable history matches. Even then, accuracy with regard to some aspects of the performance such as water or gas cuts, breakthrough times, and sweep efficiencies may be inadequate. In some cases, this could be caused by the presence of substantial flow through natural fractures. In this work the fracture characterization and modeling was performed in a highly fractured carbonate reservoir in SW Iran. It was observed that reservoir simulation based on... 

    Experimental study of miscible displacement with hydrocarbon solvent in shaly heavy oil reservoirs using five-spot micromodels: The role of shale geometrical characteristics

    , Article Journal of Porous Media ; Vol. 15, issue. 5 , 2012 , p. 415-427 ; ISSN: 1091028X Mohammadi, S ; Ghazanfari, M. H ; Masihi, M ; Kharrat, R ; Sharif University of Technology
    Abstract
    Most of the heavy oil reservoirs contain discontinuous shale which affects fluid flow through porous media as well as recovery efficiency during enhanced oil recovery processes. However, the role of shale geometrical characteristics (including orientation, length, discontinuity, and spacing of the shale) on oil recovery remains a topic of debate in the literature, especially during miscible injection of heavy oils and five-spot systems. Here, a series of hydrocarbon solvent injection tests have been performed on various five-spot glass micromodels containing barriers which are initially saturated with heavy oil under fixed flow rate conditions. Oil recoveries as a function of pore volumes of...