Loading...
Search for: flow-cytometry
0.005 seconds
Total 22 records

    Doxorubicin-conjugated D-glucosamine- and folate- bi-functionalised InP/ZnS quantum dots for cancer cells imaging and therapy

    , Article Journal of Drug Targeting ; Volume 26, Issue 3 , 2018 , Pages 267-277 ; 1061186X (ISSN) Ranjbar Navazi, Z ; Eskandani, M ; Johari Ahar, M ; Nemati, A ; Akbari, H ; Davaran, S ; Omidi, Y ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    Nanoscaled quantum dots (QDs), with unique optical properties have been used for the development of theranostics. Here, InP/ZnS QDs were synthesised and functionalised with folate (QD-FA), D-glucosamine (QD-GA) or both (QD-FA-GA). The bi-functionalised QDs were further conjugated with doxorubicin (QD-FA-GA-DOX). Optimum Indium to fatty acid (In:MA) ratio was 1:3.5. Transmission electron microscopy (TEM) micrographs revealed spherical morphology for the QDs (11 nm). Energy-dispersive spectroscopy (EDS) spectrum confirmed the chemical composition of the QDs. MTT analysis in the OVCAR-3 cells treated with bare QDs, QD-FA, QD-GA, QD-FA-GA and QD-FA-GA-DOX (0.2 mg/mL of QDs) after 24 h indicated... 

    Niosomal delivery of simvastatin to MDA-MB-231 cancer cells

    , Article Drug Development and Industrial Pharmacy ; Volume 46, Issue 9 , 2020 , Pages 1535-1549 Akbarzadeh, I ; Saremi Poor, A ; Yaghmaei, S ; Norouzian, D ; Noorbazargan, H ; Saffar, S ; Ahangari Cohan, R ; Bakhshandeh, H ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    Objective: The objective of this study was to use nano-niosomal formulations to deliver simvastatin as a poor-water soluble drug into breast cancer cells. Significance: Our study focused on the problem associated with poor water-soluble drugs which have significant biological activity in vivo. Methods: Different niosomal formulations of simvastatin were prepared and characterized in terms of morphology, size, encapsulation efficiency (EE), and release kinetic. Antiproliferative activity and the mechanism were assessed by quantitative real-time PCR and flow cytometry. Moreover, confocal microscopy was employed to analyze the cell uptake of simvastatin loaded niosomes to the cancerous cells.... 

    Synthesizing efficacious genistein in conjugation with superparamagnetic Fe3O4 decorated with bio-compatible carboxymethylated chitosan against acute leukemia lymphoma

    , Article Biomaterials Research ; Volume 24, Issue 1 , 2020 Ghasemi Goorbandi, R ; Mohammadi, M. R ; Malekzadeh, K ; Sharif University of Technology
    BioMed Central Ltd  2020
    Abstract
    Background: Genistein (C15H10O5) is a soy isoflavone with anti-cancer properties such as inhibition of cell growth, proliferation and tumor invasion, but effective dosage against hematopoietic malignant cells was not in non-toxic range. This property cause to impede its usage as chemotherapeutic agent. Therefore, this hypothesis raised that synthesizing biocompatible nanoparticle could assist to prevail this struggle. Methods: Genistein covalently attached on Fe3O4 nanoparticles decorated with carboxymethylated chitosan to fabricate Fe3O4-CMC-genistein in alkaline circumstance. This obtained nanoparticles were evaluated by TEM, DLS, FTIR, XRD and VSM and its anti-cancer effect by growth rate... 

    Development of a nano biosensor for anti-gliadin detection for Celiac disease based on suspension microarrays

    , Article Biomedical Physics and Engineering Express ; Volume 6, Issue 5 , August , 2020 Kharati, M ; Rabiee, M ; Rostami Nejad, M ; Aghamohammadi, E ; Asadzadeh Aghdaei, H ; Zali, M. R ; Rabiee, N ; Fatahi, Y ; Bagherzadeh, M ; Webster, T. J ; Sharif University of Technology
    IOP Publishing Ltd  2020
    Abstract
    Celiac disease is an autoimmune disorder represented by the ingestion of the gluten protein usually found in wheat, barley and rye. To date, ELISA has been the most accurate method for determining the presence of anti-gliadin, which is cumbersome, expensive (compared to a suspension microarray technique), and requires extensive sample preparation. In this study, in order to establish a more accurate assay to identify gliadin at lower concentrations, optical nano biosensors using an indirect immunoassay method for gliadin detection was designed and fabricated. For this, polycaprolactone (PCL) nano- to micro-beads were fabricated as a platform for the gliadin antigen which were optimized and... 

    Effect of synthesis temperature of magnetic–fluorescent nanoparticles on properties and cellular imaging

    , Article Journal of Inorganic and Organometallic Polymers and Materials ; Volume 30, Issue 11 , 2020 , Pages 4597-4605 Sahebalzamani, H ; Mehrani, K ; Madaah Hosseini, H. R ; Zare, K ; Sharif University of Technology
    Springer  2020
    Abstract
    The excellent photoluminescent properties of Fe3O4-graphene quantum dots (Fe3O4/GQD) nanoparticles prepared at 30 and 90 °C have made them as promising optical probes for imaging. Herein, the cytotoxicity of GQD and Fe3O4/GQD nanoparticles in L929 cells was investigated using MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide] assay. The cellular apoptosis or necrosis was then evaluated by flow cytometry analysis. The Fe3O4/GQD nanoparticles were characterized by transmission electron microscopy (TEM), Raman spectroscopy (Raman), Fourier-transform infrared spectroscopy (FT-IR), photoluminescence (PL). Characterization results obtained, clearly show that Fe3O4/GQD nanoparticles... 

    Polyphenols attached graphene nanosheets for high efficiency NIR mediated photodestruction of cancer cells

    , Article Materials Science and Engineering C ; Volume 33, Issue 3 , 2013 , Pages 1498-1505 ; 09284931 (ISSN) Abdolahad, M ; Janmaleki, M ; Mohajerzadeh, S ; Akhavan, O ; Abbasi, S ; Sharif University of Technology
    2013
    Abstract
    Green tea-reduced graphene oxide (GT-rGO) sheets have been exploited for high efficiency near infrared (NIR) photothermal therapy of HT29 and SW48 colon cancer cells. The biocompatibility of GT-rGO sheets was investigated by means of MTT assays. The polyphenol constituents of GT-rGO act as effective targeting ligands for the attachment of rGO to the surface of cancer cells, as confirmed by the cell granularity test in flow cytometry assays and also by scanning electron microscopy. The photo-thermal destruction of higher metastatic cancer cells (SW48) is found to be more than 20% higher than that of the lower metastatic one (HT29). The photo-destruction efficiency factor of the GT-rGO is... 

    Cadmium telluride quantum dots induce apoptosis in human breast cancer cell lines

    , Article Toxicology and Industrial Health ; Volume 34, Issue 5 , 2018 , Pages 339-352 ; 07482337 (ISSN) Naderi, S ; Zare, H ; Taghavinia, N ; Irajizad, A ; Aghaei, M ; Panjehpour, M ; Sharif University of Technology
    SAGE Publications Ltd  2018
    Abstract
    Introduction: Semiconductor quantum dots (QDs), especially those containing cadmium, have undergone marked improvements and are now widely used nanomaterials in applicable biological fields. However, great concerns exist regarding their toxicity in biomedical applications. Because of the lack of sufficient data regarding the toxicity mechanism of QDs, this study aimed to evaluate the cytotoxicity of three types of QDs: CdTe QDs, high yield CdTe QDs, and CdTe/CdS core/shell QDs on two human breast cancer cell lines MDA-MB468 and MCF-7. Methods: The breast cancer cells were treated with different concentrations of QDs, and cell viability was evaluated via MTT assay. Hoechst staining was... 

    Scalable fabrication of tunable titanium nanotubes via sonoelectrochemical process for biomedical applications

    , Article Ultrasonics Sonochemistry ; Volume 64 , June , 2020 Mansoorianfar, M ; Khataee, A ; Riahi, Z ; Shahin, K ; Asadnia, M ; Razmjou, A ; Hojjati Najafabadi, A ; Mei, C ; Orooji, Y ; Li, D ; Sharif University of Technology
    Elsevier B. V  2020
    Abstract
    Titanium does not react well with the human tissues and due to its bio-inert nature the surface modification has yet to be well-studied. In this study, the sonoelectrochemical process has been carried out to generate TiO2 nanotube arrays on implantable Ti 6–4. All the prepared nanotubes fill with the vancomycin by immersion and electrophoresis method. Drug-releasing properties, antibacterial behavior, protein adsorption and cell attachment of drug-modified nanotubes are examined by UV–vis, flow cytometry, modified disc diffusion, BSA adsorption, and FESEM, respectively. The most uniform morphology, appropriate drug release, cell viability behavior and antibacterial properties can be achieved... 

    Poly-L-lysine/hyaluronan nanocarriers as a novel nanosystem for gene delivery

    , Article Journal of Microscopy ; Volume 287, Issue 1 , 2022 , Pages 32-44 ; 00222720 (ISSN) Souri, M ; Bagherzadeh, M. A ; Mofazzal Jahromi, M. A ; Mohammad-Beigi, H ; Abdoli, A ; Mir, H ; Roustazadeh, A ; Pirestani, M ; Sahandi Zangabad, P ; Kiani, J ; Bakhshayesh, A ; Jahani, M ; Joghataei, M. T ; Karimi, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    The present research comes up with a novel DNA-loaded poly-L-lysine (PLL)/hyaluronan (HA) nanocarrier (DNA-loaded PLL/HA NCs) for gene delivery applications, as a promising candidate for gene delivery into diverse cells. A straightforward approach was employed to prepare such a nanosystem through masking DNA-loaded PLL molecules by HA. Fourier-transform infrared (FTIR) spectroscopy, dynamic light scattering (DLS), field emission-scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM) were used to analyse the interaction of the molecules as well as the physicochemical properties of the NCs. The NCs showed a negative charge of –24 ± 3 mV, with an average size of 138 ±... 

    Co-delivery of letrozole and cyclophosphamide via folic acid-decorated nanoniosomes for breast cancer therapy: Synergic effect, augmentation of cytotoxicity, and apoptosis gene expression

    , Article Pharmaceuticals ; Volume 15, Issue 1 , 2022 ; 14248247 (ISSN) Sahrayi, H ; Hosseini, E ; Karimifard, S ; Khayam, N ; Meybodi, S. M ; Amiri, S ; Bourbour, M ; Far, B. F ; Akbarzadeh, I ; Bhia, M ; Hoskins, C ; Chaiyasut, C ; Sharif University of Technology
    MDPI  2022
    Abstract
    Breast cancer is one of the most prevalent causes of cancer mortality in women. In order to increase patient prognosis and survival rates, new technologies are urgently required to deliver therapeutics in a more effective and efficient manner. Niosome nanoparticles have been recently employed as therapeutic platforms capable of loading and carrying drugs within their core for both mono and combination therapy. Here, niosome-based nanoscale carriers were investigated as a targeted delivery system for breast cancer therapy. The platform developed consists of niosomes loaded with letrozole and cyclophosphamide (NLC) and surface-functionalized with a folic-acidtargeting moiety (NLCPFA). Drug... 

    Engineering folate-targeting diselenide-containing triblock copolymer as a redox-responsive shell-sheddable micelle for antitumor therapy in vivo

    , Article Acta Biomaterialia ; Volume 76 , 2018 , Pages 239-256 ; 17427061 (ISSN) Behroozi, F ; Abdkhodaie, M. J ; Sadeghi Abandansari, H ; Satarian, L ; Molazem, M ; Al Jamal, K. T ; Baharvand, H ; Sharif University of Technology
    Acta Materialia Inc  2018
    Abstract
    The oxidation-reduction (redox)–responsive micelle system is based on a diselenide-containing triblock copolymer, poly(ε-caprolactone)-bis(diselenide-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate) [PCL-(SeSe-mPEG/PEG-FA)2]. This has helped in the development of tumor-targeted delivery for hydrophobic anticancer drugs. The diselenide bond, as a redox-sensitive linkage, was designed in such a manner that it is located at the hydrophilic–hydrophobic hinge to allow complete collapse of the micelle and thus efficient drug release in redox environments. The amphiphilic block copolymers self-assembled into micelles at concentrations higher than the critical micelle concentration (CMC)... 

    MiR-9-5p and miR-106a-5p dysregulated in CD4+ T-cells of multiple sclerosis patients and targeted essential factors of T helper17/regulatory T-cells differentiation

    , Article Iranian Journal of Basic Medical Sciences ; Volume 21, Issue 3 , March , 2018 , Pages 277-283 ; 20083866 (ISSN) Majd, M ; Hosseini, A ; Ghaedi, K ; Kiani Esfahani, A ; Tanhaei, S ; Shiralian Esfahani, H ; Rahnamaee, S. Y ; Mowla, S. J ; Nasr Esfahani, M. H ; Sharif University of Technology
    Mashhad University of Medical Sciences  2018
    Abstract
    Objective(s): Multiple sclerosis (MS) is considered as a chronic type of an inflammatory disease characterized by loss of myelin of CNS. Recent evidence indicates that Interleukin 17 (IL-17)-producing T helper cells (Th17 cells) population are increased and regulatory T cells (Treg cells) are decreased in MS. Despite extensive research in understanding the mechanism of Th17 and Treg differentiation, the role of microRNAs in MS is not completely understood. Thereby, as a step closer, we analyzed the expression profile of miR-9-5p and miR-106a-5p, and protein level of retinoic acid receptor (RAR)-related orphan receptor C (RORC; Th17 master transcription factor) as direct target of miR-106a-5p... 

    Graphene oxide negatively regulates cell cycle in embryonic fibroblast cells

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 6201-6209 Hashemi, E ; Akhavan, O ; Shamsara, M ; Ansari Majd, S ; Sanati, M. H ; Daliri Joupari, M ; Farmany, A ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Background: Unique properties of graphene and its derivatives make them attractive in the field of nanomedicine. However, the mass application of graphene might lead to side effects, which has not been properly addressed in previous studies, especially with regard to its effect on the cell cycle. Methods: The effect of two concentrations (100 and 200 μg/mL) of nano-and microsized graphene oxide (nGO and mGO) on apoptosis, cell cycle, and ROS generation was studied. The effect of both sizes on viability and genotoxicity of the embryonic fibroblast cell cycle was evaluated. MTT and flow cytometry were applied to evaluate the effects of graphene oxide (GO) nanosheets on viability of cells.... 

    Oncolytic newcastle disease virus delivered by mesenchymal stem cells-engineered system enhances the therapeutic effects altering tumor microenvironment

    , Article Virology Journal ; Volume 17, Issue 1 , 2020 Keshavarz, M ; Ebrahimzadeh, M. S ; Miri, S. M ; Dianat Moghadam, H ; Ghorbanhosseini, S. S ; Mohebbi, S. R ; Keyvani, H ; Ghaemi, A ; Sharif University of Technology
    BioMed Central Ltd  2020
    Abstract
    Background: Human papillomavirus (HPV)-associated malignancy remain a main cause of cancer in men and women. Cancer immunotherapy has represented great potential as a new promising cancer therapeutic approach. Here, we report Mesenchymal stem cells (MSCs) as a carrier for the delivery of oncolytic Newcastle disease virus (NDV) for the treatment of HPV-associated tumor. Methods: For this purpose, MSCs obtained from the bone marrow of C57BL mice, then cultured and characterized subsequently by the flow cytometry analysis for the presence of cell surface markers. In this study, we sought out to determine the impacts of MSCs loaded with oncolytic NDV on splenic T cell and cytokine immune... 

    Folate conjugated hyaluronic acid coated alginate nanogels encapsulated oxaliplatin enhance antitumor and apoptosis efficacy on colorectal cancer cells (HT29 cell line)

    , Article Toxicology in Vitro ; Volume 65 , 2020 Movahedi Shad, P ; Zare Karizi, S ; Safaie Javan, R ; Mirzaie, A ; Noorbazargan, H ; Akbarzadeh, I ; Rezaie, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Oxaliplatin (OXA) has been widely used for treatment of colorectal cancer. In this study, to enhance antitumor and apoptosis efficacy, OXA was encapsulated in a novel folate conjugated hyaluronic acid coated alginate nanogels (F/HA/AL/OXA). The F/HA/AL/OXA nanogels were prepared by cross-linking process. The physico-chemical properties of F/HA/AL/OXA nanogels were characterized using scanning electron microscopy, transmission electron microscopy, fourier transform infrared spectroscopy, dynamic light scattering, and fluorescent spectrophotometry. The in-vitro antitumor activity of free OXA, AL, HA/AL, HA/AL/OXA and F/HA/AL/OXA nanogels were assessed using MTT assay against colorectal cancer... 

    MicroRNA profiling reveals important functions of miR-125b and let-7a during human retinal pigment epithelial cell differentiation

    , Article Experimental Eye Research ; Volume 190 , 2020 Shahriari, F ; Satarian, L ; Moradi, S ; Sharifi Zarchi, A ; Günther, S ; Kamal, A ; Totonchi, M ; Mowla, S. J ; Braun, T ; Baharvand, H ; Sharif University of Technology
    Academic Press  2020
    Abstract
    Retinal pigment epithelial (RPE) cells are indispensable for eye organogenesis and vision. To realize the therapeutic potential of in vitro-generated RPE cells for cell-replacement therapy of RPE-related retinopathies, molecular mechanisms of RPE specification and maturation need to be investigated. So far, many attempts have been made to decipher the regulatory networks involved in the differentiation of human pluripotent stem cells into RPE cells. Here, we exploited a highly-efficient RPE differentiation protocol to determine global expression patterns of microRNAs (miRNAs) during human embryonic stem cell (hESC) differentiation into RPE using small RNA sequencing. Our results revealed a... 

    Multifunctional core-shell nanoplatforms (gold@graphene oxide) with mediated NIR thermal therapy to promote miRNA delivery

    , Article Nanomedicine: Nanotechnology, Biology, and Medicine ; Volume 14, Issue 6 , 2018 , Pages 1891-1903 ; 15499634 (ISSN) Assali, A ; Akhavan, O ; Adeli, M ; Razzazan, S ; Dinarvand, R ; Zanganeh, S ; Soleimani, M ; Dinarvand, M ; Atyabi, F ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    Recent insights into the nanomedicine have revealed that nanoplatforms enhance the efficacy of carrier in therapeutic applications. Here, multifunctional nanoplatforms were utilized in miRNA-101 delivery and NIR thermal therapy to induce apoptosis in breast cancer cells. Au nanorods (NRs) or nanospheres (NSs) covered with graphene oxide (GO) were prepared and functionalized with polyethylene glycol as a stabilizer and poly-L-arginine (P-L-Arg) as a targeting agent. In nanoplatforms, coupling Au@GO prepared stable structures with higher NIR reactivity. P-L-Arg substantially enhanced the cellular uptake and gene retardation of stuffs coated by them. However, rod-shape nanoplatforms indicated... 

    Delivery of melittin-loaded niosomes for breast cancer treatment: an in vitro and in vivo evaluation of anti-cancer effect

    , Article Cancer Nanotechnology ; Volume 12, Issue 1 , 2021 ; 18686958 (ISSN) Dabbagh Moghaddam, F ; Akbarzadeh, I ; Marzbankia, E ; Farid, M ; khaledi, L ; Reihani, A. H ; Javidfar, M ; Mortazavi, P ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Melittin, a peptide component of honey bee venom, is an appealing candidate for cancer therapy. In the current study, melittin, melittin-loaded niosome, and empty niosome had been optimized and the anticancer effect assessed in vitro on 4T1 and SKBR3 breast cell lines and in vivo on BALB/C inbred mice. "Thin-layer hydration method" was used for preparing the niosomes; different niosomal formulations of melittin were prepared and characterized in terms of morphology, size, polydispersity index, encapsulation efficiency, release kinetics, and stability. A niosome was formulated and loaded with melittin as a promising drug carrier system for chemotherapy of the breast cancer cells.... 

    Expression and function of c1orf132 long-noncoding rna in breast cancer cell lines and tissues

    , Article International Journal of Molecular Sciences ; Volume 22, Issue 13 , 2021 ; 16616596 (ISSN) Shafaroudi, A. M ; Sharifi Zarchi, A ; Rahmani, S ; Nafissi, N ; Mowla, S. J ; Lauria, A ; Oliviero, S ; Matin, M. M ; Sharif University of Technology
    MDPI  2021
    Abstract
    miR-29b2 and miR-29c play a suppressive role in breast cancer progression. C1orf132 (also named MIR29B2CHG) is the host gene for generating both microRNAs. However, the region also expresses longer transcripts with unknown functions. We employed bioinformatics and experimental approaches to decipher C1orf132 expression and function in breast cancer tissues. We also used the CRISPR/Cas9 technique to excise a predicted C1orf132 distal promoter and followed the behavior of the edited cells by real-time PCR, flow cytometry, migration assay, and RNA-seq techniques. We observed that C1orf132 long transcript is significantly downregulated in triple-negative breast cancer. We also identified a... 

    CRISPRi-mediated knock-down of PRDM1/BLIMP1 programs central memory differentiation in ex vivo-expanded human T cells

    , Article BioImpacts ; Volume 12, Issue 4 , 2022 , Pages 337-347 ; 22285652 (ISSN) Azadbakht, M ; Sayadmanesh, A ; Nazer, N ; Ahmadi, A ; Hemmati, S ; Mohammadzade, H ; Ebrahimi, M ; Baharvand, H ; Khalaj, B ; Aghamaali, M. R ; Basiri, M ; Sharif University of Technology
    Tabriz University of Medical Sciences  2022
    Abstract
    Introduction: B lymphocyte-induced maturation protein 1 (BLIMP1) encoded by the positive regulatory domain 1 gene (PRDM1), is a key regulator in T cell differentiation in mouse models. BLIMP1-deficiency results in a lower effector phenotype and a higher memory phenotype. Methods: In this study, we aimed to determine the role of transcription factor BLIMP1 in human T cell differentiation. Specifically, we investigated the role of BLIMP1 in memory differentiation and exhaustion of human T cells. We used CRISPR interference (CRISPRi) to knock-down BLIMP1 and investigated the differential expressions of T cell memory and exhaustion markers in BLIMP1-deficient T cells in comparison with...