Loading...
Search for: finite-time-lyapunov-exponent
0.005 seconds

    Trunk dynamic stability assessment for individuals with and without nonspecific low back pain during repetitive movement

    , Article Human Factors ; 2020 Asgari, M ; Mokhtarinia, H. R ; Sanjari, M. A ; Kahrizi, S ; Philip, G. C ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    SAGE Publications Inc  2020
    Abstract
    Objective: This study aimed to employ nonlinear dynamic approaches to assess trunk dynamic stability with speed, symmetry, and load during repetitive flexion-extension (FE) movements for individuals with and without nonspecific low back pain (NSLBP). Background: Repetitive trunk FE movement is a typical work-related LBP risk factor contingent on speed, symmetry, and load. Improper settings/adjustments of these control parameters could undermine the dynamic stability of the trunk, hence leading to low back injuries. The underlying stability mechanisms and associated control impairments during such dynamic movements remain elusive. Method: Thirty-eight male volunteers (19 healthy, 19 NSLBP)... 

    Trunk dynamic stability assessment for individuals with and without nonspecific low back pain during repetitive movement

    , Article Human Factors ; Volume 64, Issue 2 , 2022 , Pages 291-304 ; 00187208 (ISSN) Asgari, M ; Mokhtarinia, H. R ; Sanjari, M. A ; Kahrizi, S ; Philip, G. C ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    SAGE Publications Inc  2022
    Abstract
    Objective: This study aimed to employ nonlinear dynamic approaches to assess trunk dynamic stability with speed, symmetry, and load during repetitive flexion-extension (FE) movements for individuals with and without nonspecific low back pain (NSLBP). Background: Repetitive trunk FE movement is a typical work-related LBP risk factor contingent on speed, symmetry, and load. Improper settings/adjustments of these control parameters could undermine the dynamic stability of the trunk, hence leading to low back injuries. The underlying stability mechanisms and associated control impairments during such dynamic movements remain elusive. Method: Thirty-eight male volunteers (19 healthy, 19 NSLBP)... 

    The effects of movement speed on kinematic variability and dynamic stability of the trunk in healthy individuals and low back pain patients

    , Article Clinical Biomechanics ; Volume 30, Issue 7 , Aug , 2015 , Pages 682-688 ; 02680033 (ISSN) Asgari, M ; Sanjari, M. A ; Mokhtarinia, H. R ; Moeini Sedeh, S ; Khalaf, K ; Parnianpour, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Background: Comparison of the kinematic variability and dynamic stability of the trunk between healthy and low back pain patient groups can contribute to gaining valuable information about the movement patterns and neuromotor strategies involved in various movement tasks. Methods: Fourteen chronic low back pain patients with mild symptoms and twelve healthy male volunteers performed repeated trunk flexion-extension movements in the sagittal plane at three different speeds: 20 cycles/min, self-selected, and 40 cycles/min. Mean standard deviations, coefficient of variation and variance ratio as variability measures; maximum finite-time Lyapunov exponents and maximum Floquet multipliers as...