Loading...
Search for: fibrin
0.005 seconds

    A hybrid scaffold of gelatin glycosaminoglycan matrix and fibrin as a carrier of human corneal fibroblast cells

    , Article Materials Science and Engineering C ; Volume 118 , 2021 ; 09284931 (ISSN) Hajian Foroushani, Z ; Mahdavi salimi, S ; Abdekhodaie, M. J ; Baradaran Rafii, A ; Tabatabei, M. R ; Mehrvar, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A hybrid scaffold of gelatin-glycosaminoglycan matrix and fibrin (FGG) has been synthesized to improve the mechanical properties, degradation time and cell response of fibrin-like scaffolds. The FGG scaffold was fabricated by optimizing some properties of fibrin-only gel and gelatin-glycosaminoglycan (GG) scaffolds. Mechanical analysis of optimized fibrin-only gel showed the Young module and tensile strength of up to 72 and 121 KPa, respectively. Significantly, the nine-fold increase in the Young modulus and a seven-fold increase in tensile strength was observed when fibrin reinforced with GG scaffold. Additionally, the results demonstrated that the degradation time of fibrin was enhanced... 

    Fabrication of Fibrin Sheets for Tissue Regeneration

    , M.Sc. Thesis Sharif University of Technology Hajian Foroushani, Zahra (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor)
    Abstract
    The cornea is a transparent, avascular, multilayer, connective tissue. When the erosion process of these cells occur, where natural and quick restoration is expected, corneal disorders begin. Regeneration of corneal tissue, using a biocompatible method is a great point of interest. Nowadays, scaffold based on amniotic membrane is used as a basement membrane in the regeneration of corneal tissue. Lots of researches focused on using auto graft scaffold to decrease the inflammation and infection of an allografts and synthetic scaffolds, while overcoming amniotic membrane’s weak mechanical properties. The aim of this survey is to construct an appropriate scaffold from patient’s own blood to... 

    Computational Study on the Evaluation of Antihemophilic Factors Effect on Clot Formation

    , M.Sc. Thesis Sharif University of Technology Barzegar, Saeed (Author) ; Assempour, Ahmad (Supervisor) ; Ahmadian, Mohammad Taghi (Supervisor)
    Abstract
    Many heart attacks and strokes are caused by improper clot formation in the vascular system. Mathematical understanding of the clot formation process and the influence of various factors in the clot formation process is very important. In this study, the aim is to simulate and understand the clotting process mathematically by considering natural, external and general mechanisms in the clotting process. In this process, when damage occurs in the endothelial region of the vessel, tissue factor is released and 38 different substances react with each other inside the plasma, eventually forming fibrin. To simulate the movement of different chemical components and proteins in plasma, the... 

    Fabrication, modeling and optimization of lyophilized advanced platelet rich fibrin in combination with collagen-chitosan as a guided bone regeneration membrane

    , Article International Journal of Biological Macromolecules ; Volume 125 , 2019 , Pages 383-391 ; 01418130 (ISSN) Ansarizadeh, M ; Mashayekhan, S ; Saadatmand, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, lyophilized advanced platelet rich fibrin (A-PRF) was used in combination with collagen-chitosan membrane for the first time to combine advantages of both collagen and A-PRF membranes. Response surface methodology (RSM) was used to design the experimental condition and to correlate the effects of parameters, including chitosan/collagen (chit/col) weight ratio and A-PRF concentration on Young's modulus, mesenchymal stem cell (MSCs) viability and degradation rate of the membranes. Results showed that Young's modulus of the membranes was intensified by increasing chit/col weight ratio and decreasing A-PRF concentration from 3 to 8 MPa. Cell viability of MSCs was improved by both... 

    Development of a genetic algorithm based biomechanical simulation of sagittal lifting tasks

    , Article Biomedical Engineering - Applications, Basis and Communications ; Volume 17, Issue 1 , 2005 , Pages 12-18 ; 10162372 (ISSN) Gündoǧdu, Ö ; Anderson, K. S ; Parnianpour, M ; Sharif University of Technology
    Institute of Biomedical Engineering  2005
    Abstract
    Fibrin sealant and platelet gels are human blood-derived, biodegradable, non toxic, surgical products obtained by mixing a fibrinogen concentrate or a platelet rich plasma with thrombin, respectively. Fibrin sealant is now a well known surgical tool increasingly used to stop or control bleeding, or to provide air and fluid tightness in many surgical situations. Platelet gels are newly developed preparations that are of specific interest because they contain numerous physiological growth factors and cytikines that are released upon the activation of blood platelets by thrombin. These growth factors, including PDGF, TGF-β1, BMP, and VEGF have been shown to stimulate cell growth and... 

    Modifying Collagen Membrane Used for Guided Tissue Regeneration

    , M.Sc. Thesis Sharif University of Technology Ansarizadeh, Mohammad Hassan (Author) ; Mashayekhan, Shohreh (Supervisor) ; Saadatmand, Maryam (Supervisor) ; Khoshzaban, Ahad (Co-Advisor)
    Abstract
    In this study, lyophilized advance platelet rich fibrin (A-PRF) was used in combination with collagen membrane for the first time to accelerate bone regeneration as a result of growth factor release. Firstly, collagen was extracted from calf skin and analyzed using SDS-PAGE. FTIR has shown that EDC/NHS were chemically crosslinked collagen to collagen and collagen to chitosan. The morphology of collagen, collagen/chitosan composite membrane with different chitosan content, lyophilized A-PRF attached to membrane were showed using SEM images. The pore sizes were varied from 100 to 300 µm. Response surface methodology (RSM) was used to design experimental condition and to correlate the effect... 

    Mathematical modeling of human blood clotting formation

    , Article 6th International Special Topic Conference on ITAB, 2007, Tokyo, 8 November 2007 through 11 November 2007 ; 2007 , Pages 273-276 ; 9781424418688 (ISBN) Ravanshadi, S ; Jahed, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2007
    Abstract
    Over the last two decades, mathematical modeling has become a popular tool in study of blood coagulation. This paper describes the coagulation pathway and presents a mathematical model for the generation of blood clot in human vasculature. Parameters of interest in this study include procoagulants and anticoagulants whose activity may be enhanced by various activator enzymes. The process of human blood clotting involves a complex interaction between these parameters and continuous time and state processes. In this work, we propose to model these highly inter-relational processes by a set of nonlinear chemical rate equations. We have modeled this process as a dynamical system, as chemical... 

    Construction of A Polymeric Scaffold for Dental Pulp Regeneration

    , Ph.D. Dissertation Sharif University of Technology Noohi, Parisa (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor) ; Saadatmand, Maryam (Supervisor) ; Nekoofar, Mohammad Hossein (Supervisor)
    Abstract
    Pulp necrosis in immature teeth disrupts root development and predisposes roots to fracture as a consequence of their thin walls and open apices. Regenerative endodontics is a developing treatment modality whereby necrotic pulps are replaced with newly formed healthy pulp-like tissue. Many clinical studies have demonstrated the potential of this strategy to stimulate root maturation and apical root-end closure. However, clinical outcomes are patient-dependent and unpredictable. The development of predictable clinical protocols is achieved through the interplay of the three classical elements of tissue engineering, namely, stem cells, signaling molecules, and scaffolds. Scaffolds provide... 

    Empirical modeling of mechanical properties of modified collagen/chitosan membrane by response surface methodology

    , Article 24th Iranian Conference on Biomedical Engineering and 2017 2nd International Iranian Conference on Biomedical Engineering, ICBME 2017, 30 November 2017 through 1 December 2017 ; 2018 ; 9781538636091 (ISBN) Ansarizadeh, M ; Mashayekhan, S ; Saadatmand, M ; Khashabi, E ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    In this study, collagen/chitosan membrane used for guided bone regeneration (GBR) was modified. Collagen and chitosan are routinely used in GBR membrane fabrication. In addition advanced platelet rich fibrin (A-PRF) is a promising substitution for fabricating membrane in dental surgery. Herein, acid soluble collagen from calf skin was extracted and characterized. The combination of A-PRF with collagen/chitosan membrane was investigated in this study. FTIR analysis revealed that chemical crosslinking using EDC/NHS was occurred. The morphology of collagen/chitosan membrane in a gradient manner of chitosan was assessed via SEM images. Response surface methodology (RSM) was used to... 

    Biodegradable nanopolymers in cardiac tissue engineering: from concept towards nanomedicine

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 4205-4224 Mohammadi Nasr, S ; Rabiee, N ; Hajebi, S ; Ahmadi, S ; Fatahi, Y ; Hosseini, M ; Bagherzadeh, M ; Ghadiri, A. M ; Rabiee, M ; Jajarmi, V ; Webster, T. J ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Abstract
    Cardiovascular diseases are the number one cause of heart failure and death in the world, and the transplantation of the heart is an effective and viable choice for treatment despite presenting many disadvantages (most notably, transplant heart availability). To overcome this problem, cardiac tissue engineering is considered a promising approach by using implantable artificial blood vessels, injectable gels, and cardiac patches (to name a few) made from biodegradable polymers. Biodegradable polymers are classified into two main categories: natural and synthetic polymers. Natural biodegradable polymers have some distinct advantages such as biodegradability, abundant availability, and...