Loading...
Search for: ethanol-fuels
0.003 seconds

    Investigation of fuel dilution in ethanol spray MILD combustion

    , Article Applied Thermal Engineering ; Volume 159 , 2019 ; 13594311 (ISSN) Motaalegh Mahalegi, H. K ; Mardani, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    MILD combustion is a promising technique for low heating value fuels. In this paper, spray MILD combustion of diluted liquid fuel is numerically studied. The modelling framework is based on the RANS approach, the EDC combustion model with a skeletal chemical mechanism, and the Lagrangian tracking of droplets. The validated numerical model is used to simulate the combustion of ethanol diluted with water is studied for different oxidizer temperatures and O2 concentrations under MILD condition. Results indicate that a low-level fuel dilution up to 5 percent has tendency toward expansion of MILD region, but higher degrees fuel dilution within the range of 5–20 percent results in a reduction of... 

    Turbocharged spark-ignition engine performance prediction in various inlet charged air temperatures fueled with gasoline–ethanol blends

    , Article International Journal of Engine Research ; Volume 22, Issue 7 , 2021 , Pages 2233-2243 ; 14680874 (ISSN) Farzam, R ; Jafari, B ; Kalaki, F ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    In this research, the effect of alternative fuels and the inlet charged air temperature is numerically investigated on the performance of a turbocharged spark-ignition engine. For this purpose, a one-dimensional engine and turbocharger model is created in an engine simulation and performance analysis software and validated with former experimental results. Then, the model is run with four fuel types, including two gasoline types with different octane numbers and two ethanol–gasoline blend fuels—E25 and E85. In each case, the inlet charged air temperature is changed from cold to hot condition and performance characteristics such as the spark advance timing, brake torque, brake-specific fuel... 

    Nanocomposite with promoted electrocatalytic behavior based on bimetallic pd-ni nanoparticles, manganese dioxide, and reduced graphene oxide for efficient electrooxidation of ethanol

    , Article Journal of Physical Chemistry C ; Volume 122, Issue 18 , 2018 , Pages 9783-9794 ; 19327447 (ISSN) Rezaee, S ; Shahrokhian, S ; Amini, M. K ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    In this work, a nanocomposite containing manganese dioxide (MnO2) modified reduced graphene oxide (rGO) supported bimetallic palladium-nickel (Pd-Ni) catalyst is prepared by electrodeposition method. The nanocomposite modifier film is prepared by forming a thin layer of graphene oxide (GO) via drop-casting of GO nanosheet dispersion on glassy carbon electrode (GCE), followed by electrochemical reduction of the film to provide rGO/GCE. Then, a two-step potential procedure is applied to deposit MnO2 nanoparticles on rGO/GCE. At the optimum deposition conditions, MnO2 nanoparticles with a thickness of 30-50 nm homogeneously covered the rGO surface (MnO2/rGO/GCE). Finally, the bimetallic Pd-Ni... 

    Direct conversion of inorganic complexes to platinum/thin oxide nanoparticles decorated on MOF-derived chromium oxide/nanoporous carbon composite as an efficient electrocatalyst for ethanol oxidation reaction

    , Article Journal of Colloid and Interface Science ; Volume 555 , 2019 , Pages 655-666 ; 00219797 (ISSN) Kamyar, N ; Rezaee, S ; Shahrokhian, S ; Amini, M. M ; Sharif University of Technology
    Academic Press Inc  2019
    Abstract
    In this work, we present the design and fabrication of a novel nanocomposite based on noble metal and metal oxide nanoparticles dispersed on highly porous carbon obtained via the pyrolysis of an inorganic complex and metal-organic frameworks. This nanocomposite is prepared by a two-step procedure: first, the composite support of nanoporous carbon (NPC) is obtained by the direct carbonization of the Cr-benzene dicarboxylic ligand (BDC) MOF in an Argon atmosphere at 500 °C (Cr2O3-NPC). A mixture containing Cr2O3-NPC and [PtCl(SnCl3)(SMe2)2] is then prepared, and underflow of Argon is heated to 380 °C. Finally, Pt-SnO2 nanoparticles are loaded on the Cr2O3-NPC support, and the obtained...