Loading...
Search for: equations-of-state-of-gases
0.007 seconds

    A new cubic equation of state for sweet and sour natural gases even when composition is unknown

    , Article Fuel ; Vol. 134, issue , 2014 , pp. 333-342 ; ISSN: 00162361 Jarrahian, A ; Heidaryan, E ; Sharif University of Technology
    Abstract
    In this paper, the Heidaryan and Jarrahian equation of state (Heidaryan and Jarrahian, 2013) has been adapted as a first worldwide cubic EOS to calculate the density of dry natural gases, wet natural gases, and single-phase gas condensates "sweet and sour mixtures" (up to 73.85, 97.63 and 38.37 mol percent of H2S, CO2, and N2 respectively) even when the gas composition is unknown, through new gas specific gravity correlation equations. Correction terms of water content as high as 10 mol percent of H2O and hythane (natural gas + hydrogen) as high as 74.9 mol percent of H2 were obtained. The equation of state was validated with 8985 experimental compressibility factor data points from 308... 

    Prediction of water content of sour and acid gases

    , Article Fluid Phase Equilibria ; Volume 299, Issue 2 , December , 2010 , Pages 171-179 ; 03783812 (ISSN) Zirrahi, M ; Azin, R ; Hassanzadeh, H ; Moshfeghian, M ; Sharif University of Technology
    2010
    Abstract
    Estimating the feasibility of acid gas geological disposal requires the knowledge of the water content of the gas phase at moderate pressures and temperatures (typically below 50MPa, below 380K) and up to 6mol NaCl. In this paper, a non-iterative model is developed to predict the water content of sour and acid gases at equilibrium with pure water and brine. This model is based on equating the chemical potential of water and using the modified Redlich-Kwong equation of state to calculate the fugacity of the gas phase. The water content of pure CH4, CO2 and H2S are represented with average absolute deviations of less than 3.36, 7.04 and 8.4%, respectively. Experimental data of the water... 

    An improved component retrieval method for cubic equations of state with non-zero binary interaction coefficients for natural oil and gas

    , Article Journal of Petroleum Exploration and Production Technology ; Volume 6, Issue 2 , 2016 , Pages 243-251 ; 21900558 (ISSN) Assareh, M ; Ghotbi, C ; Bashiri, G ; Roayaie, E ; Sharif University of Technology
    Springer Verlag 
    Abstract
    Volumetric and equilibrium calculations for the natural gas and oil defined by a large number of components are not feasible in applications like compositional reservoir simulation. Therefore, the fluid mixture is grouped to reduce computational load and to make faster calculations. However, for several reasons, it is required to have the detailed fluid composition rather than the lumped one. In this work, an improved delumping method is presented to retrieve the phase composition of the detailed mixture based on the grouped mixture thermodynamic calculations. The method is based on previously proposed delumping techniques for non-cubic equation of state (Assareh et al. in Fluid Phase... 

    Simulation and performance improvement of cryogenic distillation column, using enhanced predictive Peng–Robinson equation of state

    , Article Fluid Phase Equilibria ; Volume 489 , 2019 , Pages 117-130 ; 03783812 (ISSN) Ardeshir Larijani, M ; Bayat, M ; Afshin, H ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, a cryogenic distillation column has been designed and simulated via a computer code based on the theta method of convergence. The required thermodynamic properties are determined from the enhanced predictive Peng-Robinson (E-PPR 78) equation of state which has a good accuracy in predicting the corresponding thermodynamic properties of natural gas components. The combined code of distillation column/equation of state has been verified with that of another study. In the present study, the results are achieved by the constant molar over-flow and inclusion of energy equations assumptions. In order to have more accuracy in the results, the energy equations were considered in the... 

    Prediction of asphaltene precipitation during pressure depletion and CO2 injection for heavy crude

    , Article Petroleum Science and Technology ; Vol. 28, issue. 9 , Mar , 2009 , p. 892-902 ; ISSN: 10916466 Tavakkoli, M ; Kharrat, R ; Masihi, M ; Ghazanfari, M. , H ; Sharif University of Technology
    Abstract
    In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, and the oil and gas phases are modeled with an equation of state. The Peng-Robinson equation of state (PR-EOS) was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on the solid model was developed and used for predicting asphaltene precipitation data reported in the literature as well as the experimental data obtained from high-pressure, high-temperature asphaltene precipitation experiments performed on Sarvak reservoir... 

    Prediction of asphaltene precipitation during pressure depletion and CO2 injection for heavy crude

    , Article Petroleum Science and Technology ; Volume 28, Issue 9 , Apr , 2010 , Pages 892-902 ; 10916466 (ISSN) Tavakkoli, M ; Kharrat, R ; Masihi, M ; Ghazanfari, M. H ; Sharif University of Technology
    2010
    Abstract
    In this work, a thermodynamic approach is used for modeling the phase behavior of asphaltene precipitation. The precipitated asphaltene phase is represented by an improved solid model, and the oil and gas phases are modeled with an equation of state. The Peng-Robinson equation of state (PR-EOS) was used to perform flash calculations. Then, the onset point and the amount of precipitated asphaltene were predicted. A computer code based on the solid model was developed and used for predicting asphaltene precipitation data reported in the literature as well as the experimental data obtained from high-pressure, high-temperature asphaltene precipitation experiments performed on Sarvak reservoir... 

    Water film rupture in blocked oil recovery by gas injection: experimental and modeling study

    , Article Chemical Engineering Science ; Volume 161 , 2017 , Pages 288-298 ; 00092509 (ISSN) Mirazimi, S ; Rostami, B ; Ghazanfari, M. H ; Khosravi, M ; Sharif University of Technology
    Abstract
    Water shielding phenomenon generally occurs after waterflooding in water-wet rocks, and impedes direct contact between the oil and the injected gas in tertiary gas injection processes. In this work, a set of visualization experiments were performed on micromodel patterns including designed dead-end pores with a film of water on the surface of pore bodies, which is a more realistic representation of porous media. The experiments were conducted at different miscibility conditions, and the required time for water to be displaced from the throat by the swelling of oil was measured for first contact miscible (n-C5/CO2) and immiscible (n-C10/CO2) systems. In the next step, a model was proposed to... 

    Two dimensional oscillatory flow analysis in the pulse tubes

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 10, Issue PART A , 2009 , Pages 685-690 ; 9780791848715 (ISBN) Saidi, M. H ; Taheri, M ; Jahanbakhshi, R ; Jafarian, A ; Hannani, S. K ; Sharif University of Technology
    2009
    Abstract
    Recently a great attention has been given to the oscillatory flow modeling in the pulse tube cryocoolers. In this paper multi dimensioning effects of the fluid flow in the pulse tube are investigated. A complete system of governing equations is solved to report the flow field, friction coefficient and Nusselt number in the pulse tube. Harmonic approximation technique is employed to derive an analytical solution. In this respect, mass, momentum and energy balance equations as well as the equation of state for ideal gas are transformed by implementing the harmonic approximation technique. The present model is able to predict the behavior of the two dimensional compressible oscillatory flow in... 

    Numerical investigation of gaseous hydrogen and liquid oxygen combustion under subcritical condition

    , Article Energy and Fuels ; Volume 33, Issue 9 , 2019 , Pages 9249-9271 ; 08870624 (ISSN) Mardani, A ; Ghasempour Farsani, A ; Farshchi, M ; Sharif University of Technology
    American Chemical Society  2019
    Abstract
    This study is on combustion modeling of gaseous hydrogen and cryogenic liquid oxygen at the subcritical condition for the well-known Mascotte laboratory combustor. The proposed strategy relies on the hybrid Eulerian-Lagrangian framework in which the continuous phase is evaluated by Reynolds Average Navier-Stokes (RANS) equations and the quick discretization method. The dispersed phase of the combustion field is evaluated by the Discrete Phase Method (DPM). The Eddy Dissipation Concept (EDC) has been performed for combustion-turbulence interaction modeling. Effects of the turbulence model, chemical kinetic mechanism, equation of state, and inlet momentum jet flux are investigated in terms of... 

    Numerical study of the mixing dynamics of trans- And supercritical coaxial jets

    , Article Physics of Fluids ; Volume 32, Issue 12 , 2020 Poormahmood, A ; Farshchi, M ; Sharif University of Technology
    American Institute of Physics Inc  2020
    Abstract
    Characterization of the transcritical coaxial injectors, accounting for the geometrical features and thermodynamics nonlinearities, is of both practical and fundamental importance. In the present study, the interactions and effects of turbulent mixing and pseudo-boiling phenomena are investigated. To do this, the mixing dynamics of bi-shear jets injected under trans- and supercritical conditions has been investigated numerically using the large-eddy simulation technique. The numerical framework provides real-gas thermodynamics and transport properties, using the Peng-Robinson equation-of-state and Chung's models, respectively. The obtained flow quantities are in good agreement with the... 

    Prediction of Joule-Thomson coefficient and inversion curve for natural gas and its components using CFD modeling

    , Article Journal of Natural Gas Science and Engineering ; Volume 83 , 2020 NabatiShoghl, S ; Naderifar, A ; Farhadi, F ; Pazuki, G ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, three equations of state (EOS) in conjunction with computational fluid dynamics (CFD) modeling were used to predict the Joule – Thomson (JT) process behavior for natural gas and various pure gases. The JT effect is encountered in several industrial applications. The experimental determination of the JT coefficient (JTC) is complicated, and there is little gas pressure-volume-temperature (PVT) data available for estimating these JTC. Thus, the development of an efficient model to predict the JT effect in industrial processes is necessary. This study was carried out to attain a clear view of the single phase-flow of hydrocarbons and nitrogen in the JT process with CFD modeling.... 

    A new multi-sample EOS model for the gas condensate phase behavior analysis

    , Article Oil and Gas Science and Technology ; Volume 66, Issue 6 , September , 2011 , Pages 1025-1033 ; 12944475 (ISSN) Mehrabian, A ; Crespo, F ; Sharif University of Technology
    2011
    Abstract
    Equations of State EOS are vastly being used to predict the phase behavior of reservoir fluids. The accuracy of EOS modeling technique over conventional correlation models would benefit an improved property prediction of these fluids. Once the crude oil or gas condensate fluid system has been probably characterized using limited laboratory tests, its PVT behavior under a variety of conditions can be easily studied. In this paper, the PVT behavior of gas condensate from a reservoir in South Pars retrograde gas field in Iran was modeled using the three-parameter Patel and Teja Equation of State. The multi-sample characterization method is used to arrive at one consistent model for retrograde...