Loading...
Search for: electromagnetic-wave-polarization
0.006 seconds

    Extended energy approach to propagation problems in general anisotropic media

    , Article Scientia Iranica ; Volume 11, Issue 3 , 2004 , Pages 255-264 ; 10263098 (ISSN) Khorasani, S ; Rashidian, B ; Sharif University of Technology
    Sharif University of Technology  2004
    Abstract
    In this article, a new general approach has been presented for exact and efficient extraction of eigenpolarizations in anisotropic electromagnetic media with arbitrary constitutive relations. It is shown that the plane wave propagation eigenpolarizations in a linear homogeneous time-independent anisotropic media without free sources, can be obtained through extremizing the difference between stored electric and magnetic energies as a variational functional. It is demonstrated that at these stationary points the wave equation is satisfied by showing that each of the Maxwell curl equations may be obtained by using the other equation as a constraint. Furthermore, it is proven that the theorem... 

    The singular sources method for cracks

    , Article Mathematical Methods in the Applied Sciences ; Volume 30, Issue 10 , 2007 , Pages 1121-1134 ; 01704214 (ISSN) Fotouhi, M ; Sharif University of Technology
    2007
    Abstract
    The singular sources method is given to detect the shape of a thin infinitely cylindrical obstacle from a knowledge of the TM-polarized scattered electromagnetic field in large distance. The basic idea is based on the singular behaviour of the scattered field of the incident point source on the cross-section of the cylinder. We assume that the scatterer is a perfect conductor which is possibly coated by a material and investigate two models with different boundary conditions. Also we give a uniqueness proof for the shape reconstruction. Copyright © 2006 John Wiley & Sons, Ltd  

    Plasmonic fractals: Ultrabroadband light trapping in thin film solar cells by a Sierpinski nanocarpet

    , Article Optical and Quantum Electronics ; Vol. 46, issue. 6 , 2014 , pp. 751-757 ; ISSN: 03068919 Kazerooni, H ; Khavasi, A ; Sharif University of Technology
    Abstract
    Plasmonic Sierpinski nanocarpet as back structure for a thin film Si solar cell is investigated. We demonstrate that ultra-broadband light trapping can be obtained by placing square metallic nanoridges with Sierpinski pattern on the back contact of the thin film solar cell. The multiple-scale plasmonic fractal structure allows excitation of localized surface plasmons and surface plasmon polaritons in multiple wavelengths leading to obvious absorption enhancements in a wide frequency range. Full wave simulations show that 109 % increase of the short-circuit current density for a 200 nm thick solar cell, is achievable by the proposed fractal back structure. The amount of light absorbed in the... 

    Investigation of a quasi-3D plasmonic nanostructure for TE and TM polarizations

    , Article Journal of the Optical Society of America B: Optical Physics ; Vol. 31, issue. 11 , 2014 , p. 2838-2844 Shahmansouri, A ; Rashidian, B ; Sharif University of Technology
    Abstract
    Quasi-3D plasmonic nanostructures consisting of a metallic film perforated as an array of nanoholes, separated by a gap from a nanodisk array, are theoretically investigated under plane wave illumination with transverse electric and transverse magnetic polarizations. The results are compared with the results of a simple nanodisk array. A full discussion involving the couplings between plasmon resonance in nanodisks, surface plasmon polaritons on the interfaces of metallic film, and different diffractive grating orders that contribute in the couplings will be presented. The large difference between the plasmon behavior of the nanodisk array alone and nanodisk array in the presence of nanohole... 

    Understanding the role of slant angle in oblique slit arrays made of metal at terahertz frequencies

    , Article IEEE Transactions on Terahertz Science and Technology ; Volume 5, Issue 3 , May , 2015 , Pages 497-504 ; 2156342X (ISSN) Edalatipour, M ; Mehrany, K ; Sharif University of Technology
    IEEE Microwave Theory and Techniques Society  2015
    Abstract
    Analytical expressions are given for zeroth-order diffraction efficiencies of metallic gratings with slanted and straight slit arrays at microwave and terahertz frequencies when the slit width is small enough to ensure that non-principal eigenmodes supported by the slit remain below cut-off. These expressions show that at lower normalized frequencies when the grating is zeroth order and all off-specular diffraction orders are evanescent, metallic slit arrays with slanted and straight walls could become identical to each other whenever certain relation is held between the geometrical parameters of the two structures. A noteworthy advantage of juxtaposing slanted and slit arrays is that it... 

    Adopting image theorem for rigorous analysis of a perfect electric conductor–backed array of graphene ribbons

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 35, Issue 8 , 2018 , Pages 1836-1844 ; 07403224 (ISSN) Rahmanzadeh, M ; Abdolali, A ; Khavasi, A ; Rajabalipanah, H ; Sharif University of Technology
    OSA - The Optical Society  2018
    Abstract
    Analytical and numerical study of graphene ribbons has become a prime focus of recent research due to their potential applications in tunable absorption, wavefront manipulation, polarization conversion, and so on. In this paper, an accurate analysis of a perfect electric conductor (PEC)–backed array of graphene ribbons (PAGR) is presented based on the well-known electromagnetic (EM) image theorem, where the induced currents are theoretically derived under a transverse-magnetic-polarized incident wave. For the first time, the proposed analysis rigorously incorporates the EM coupling effects between the PEC back plate and the subwavelength array of graphene ribbons. It is proved that the... 

    Propagation and refraction of left-handed plasmons on a semiconducting substrate covered by graphene

    , Article Optics Letters ; Volume 43, Issue 9 , 2018 , Pages 2010-2013 ; 01469592 (ISSN) Zivari, A. P ; Bagheri, A. M ; Rejaei, B ; Khavasi, A ; Sharif University of Technology
    OSA - The Optical Society  2018
    Abstract
    We show that a plasmonic semiconductor substrate can support highly confined surface plasmons when it is covered by a graphene layer. This occurs when the imaginary part of graphene conductivity and real part of the effective permittivity of the surrounding medium become simultaneously negative. Full-wave electromagnetic simulations demonstrate the occurrence of negative refraction and two-dimensional lensing at the interface separating regions supporting conventional right-handed graphene plasmons and left-handed surface plasmon polaritons. © 2018 Optical Society of America  

    Optomechanical heat transfer between molecules in a nanoplasmonic cavity

    , Article Physical Review A ; Volume 100, Issue 1 , 2019 ; 24699926 (ISSN) Ashrafi, S. M ; Malekfar, R ; Bahrampour, A. R ; Feist, J ; Sharif University of Technology
    American Physical Society  2019
    Abstract
    We explore whether localized surface plasmon polariton modes can transfer heat between molecules placed in the hot spot of a nanoplasmonic cavity through optomechanical interaction with the molecular vibrations. We demonstrate that external driving of the plasmon resonance indeed induces an effective molecule-molecule interaction corresponding to a heat transfer mechanism that can even be more effective in cooling the hotter molecule than its heating due to the vibrational pumping by the plasmon. This mechanism allows us to actively control the rate of heat flow between molecules through the intensity and frequency of the driving laser. © 2019 American Physical Society  

    Spoof surface plasmon analysis based on Marcatili's method

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 37, Issue 11 , 2020 , Pages 326-3267 Khosrovani Moghaddam, M. A ; Shishegar, A. A ; Sharif University of Technology
    OSA-The Optical Society  2020
    Abstract
    Motivated by surface plasmon polariton waveguides in the optical regime, spoof surface plasmon (SSP) waveguides have received a lot of attention in terahertz and millimeter wave frequencies.Most research on these kinds of waveguides is numerical. However, some limited analytical work can be seen in the literature. In this paper, one type of SSP waveguide that is composed of a rectangular corrugation with finite lateral width on the ground is considered, and an analytical method, which is inspired byMarcatili's method, is proposed in order to calculate the dispersion curve of the first mode. The results of this analytical method and a numerical commercial eigenmode solver are compared. The... 

    Frequency conversion and parametric amplification using a virtually rotating metasurface

    , Article Optics Express ; Volume 28, Issue 5 , 2020 , Pages 6378-6394 Seyedrezaei, Z ; Rejaei, B ; Memarian, M ; Sharif University of Technology
    OSA - The Optical Society  2020
    Abstract
    We analyze the scattering of circularly polarized electromagnetic waves from a time-varying metasurface having a time-dependent surface susceptibility that locally mimics a rotating, anisotropic surface. Such virtually rotating metasurfaces (VRM) can be realized by means of electronically tunable surface elements and reach microwave-range rotation frequencies. It is shown that the scattered field contains the incident tone, as well as a single up-or down converted tone which differs by twice the rotation frequency of the surface. A simple full frequency converter is then proposed by augmenting the VRM with a metal screen separated by a proper distance. It is shown that after reflection from... 

    Fractal metamaterial based multiband absorber operating in 5G regime

    , Article Optik ; Volume 266 , 2022 ; 00304026 (ISSN) Baqir, M. A ; Latif, H ; Altintas, O ; Akhtar, M. N ; Karaaslan, M ; Server, H ; Hameed, M ; Idrees, N. M ; Sharif University of Technology
    Elsevier GmbH  2022
    Abstract
    Multiband absorption is the interest of the microwave communities due to several applications in sensing, filtering, and stealth. Usually, the stacking of metal and dielectric multilayered structures form a multiband absorber which makes the device bulky and costly. In this paper, we investigate a multiband absorber based on a single-layered fractal metasurface for the 5G applications. The unit cell of the fractal metasurface is comprised of six ring-shaped symmetric split-ring resonators (SRRs) connected back-to-back with each other. The absorptivity is investigated in the 5G microwave regime (22–36 GHz) for various obliquities at different substrate thicknesses. Simulation results show... 

    All optical divergence and gradient operators using surface plasmon polaritons

    , Article Optics Express ; Volume 30, Issue 11 , 2022 , Pages 17806-17823 ; 10944087 (ISSN) Mohammadi, H ; Akbari, M ; Khavasi, A ; Sharif University of Technology
    Optica Publishing Group (formerly OSA)  2022
    Abstract
    In this paper, we propose a plasmonic structure based on Kretschmann configuration capable of performing various computational tasks, i.e. two dimensional isotropic differentiation, gradient and divergence computation. By means of two polarizers, a non-trivial topological charge can be generated in the transfer function of the structure thereby implementing a two dimensional differentiator. By using only one polarizer, on the other hand, the structure is able to compute either the gradient of the field distribution of a polarized light beam or the divergence of the field of an unpolarized light beam. The performance of the proposed structure in two dimensional differentiation has been... 

    High intensity enhancement of unidirectional propagation of a surface plasmon polariton beam in a metallic slit-groove nanostructure

    , Article Scientia Iranica ; Vol. 21, issue. 6 , 2014 , p. 2508-2512 ; 10263098 Eftekharinia, B ; Nabavi, S. H ; Moshaii, A ; Dabirian, A ; SharifUniversity of Technology
    Abstract
    We propose an innovative design for metallic slit-groove nanostructure to increase the propagation intensity of a unidirectional Surface Plasmon Polariton (SPP) light beam. Our idea is based on the combination of the concept of unidirectional plasmonic wave propagation in a metallic slit-groove nanostructure and the well-known hybrid modes of a hybrid metal-dielectric waveguide. Our results demonstrate that the hybrid structure results in up to 5 times enhancement in the SPP beam intensity relative to the conventional design of slit-groove nanostructure. This new design of SPP based nano source can be applied in many applications including nano photonic devices  

    Electrodynamics of tilted dirac and weyl materials: a unique platform for unusual surface plasmon polaritons

    , Article Physical Review B ; Volume 100, Issue 20 , 2019 ; 24699950 (ISSN) Jalali Mola, Z ; Jafari, A ; Sharif University of Technology
    American Physical Society  2019
    Abstract
    The electrodynamics of Weyl semimetals is an extension of Maxwell's theory where in addition to field strength tensor Fμν, an axion field enters the theory which is parametrized by a four-vector bμ=(b0,b). In tilted Weyl materials (TWMs) an additional set of parameters ζ=(ζx,ζy,ζz) enters the theory that can be encoded into the metric of the spacetime felt by electrons in TWMs. This allows an extension of Maxwell's electrodynamics that describes electric and magnetic fields in TWMs, and tilted Dirac materials (TDMs) that correspond to bμ=0. The tilt parameter ζ appearing as an off-diagonal metric matrix element, mixing time and space components, which mingles E and B fields, whereby the... 

    Nonlinear frequency conversions via weak surface polaritonic wave breaking in a hybrid plasmonic waveguide

    , Article Optics Letters ; Volume 45, Issue 19 , 2020 , Pages 5432-5435 Asgarnezhad Zorgabad, S ; Sanders, B. C ; Sharif University of Technology
    OSA - The Optical Society  2020
    Abstract
    Material design and input field properties limit high-harmonic excitation efficiency of surface-plasmon polaritons (SPPs) in a nanoscopic device. We remedy these limitations by developing a concept for a plasmonic waveguide that exploits spatiotemporal control of a weak surface polaritonic field to create efficient four-wave mixing (FWM) and periodic phase singularities. Our configuration comprises four-level double 3-type atomic medium (43 As) doped in a lossless dielectric situated above a negative-index metamaterial (NIMM) layer. We report the coherent excitation and propagation of the multiple surface polaritonic shock waves (SWs) and establish the highly efficient frequency combs by... 

    Surface-polaritonic phase singularities and multimode polaritonic frequency combs via dark rogue-wave excitation in hybrid plasmonic waveguide

    , Article New Journal of Physics ; Volume 22, Issue 3 , 2020 Asgarnezhad Zorgabad, S ; Sadighi Bonabi, R ; Kibler, B ; Özdemir, Ş. K ; Sanders, B. C ; Sharif University of Technology
    Institute of Physics Publishing  2020
    Abstract
    Material characteristics and input-field specifics limit controllability of nonlinear electromagnetic-field interactions. As these nonlinear interactions could be exploited to create strongly localized bright and dark waves, such as nonlinear surface polaritons, ameliorating this limitation is important. We present our approach to amelioration, which is based on a surface-polaritonic waveguide reconfiguration that enables excitation, propagation and coherent control of coupled dark rogue waves having orthogonal polarizations. Our control mechanism is achieved by finely tuning laser-field intensities and their respective detuning at the interface between the atomic medium and the metamaterial... 

    Single-channel high-transmission optical band-pass filter based on plasmonic nanocavities

    , Article Journal of the Optical Society of America B: Optical Physics ; Volume 37, Issue 8 , 1 August , 2020 , Pages 2329-2337 Najafabadi, M. M ; Vahidi, S ; Ghafoorifard, H ; Valizadeh, M ; Sharif University of Technology
    OSA - The Optical Society  2020
    Abstract
    This paper is concerned with the investigation of an optical band-pass filter based on subwavelength surface plasmon polaritons. The transmission characteristics are numerically analyzed by the finite-difference time-domain method, and simulation results reveal that the structure has a band-pass filtering characteristic. The metal–insulator–metal plasmonic nanostructure is implemented by several vertical rectangular cavities across an optical waveguide. The metal and dielectric materials utilized for the realization of the filter are silver and air, respectively. Furthermore, the performance can be efficiently modified by tuning the geometric parameters such as the cavities’ length and width... 

    Geometrical optimization for silver nanowire mesh as a flexible transparent conductive electrode

    , Article Applied Optics ; Volume 59, Issue 10 , 2020 , Pages 3073-3080 Nikzad, M. J ; Mahdavi, S. M ; Sadrnezhaad, S. K ; Sharif University of Technology
    OSA - The Optical Society  2020
    Abstract
    We report the effect of the geometric parameters on transparency and conductivity in a metallic nanowire mesh as a transparent electrode. Today, indium tin oxide and fluorine-doped tin oxide are used as the transparent electrode for displays and solar cells. Still, there is a definite need for their replacement due to drawbacks such as brittleness, scarcity, and adverse environmental effects. Metallic nanowire mesh is likely the best replacement option, but the main issue is how to find the optimal structure and how to get the best performance. Since the interaction of light with nanowire mesh is complicated, there is no straightforward rule with a simple analytical solution. We developed a... 

    In-band radar cross-section reduction of the slot array antennas by RAM-based frequency selective surfaces

    , Article IET Microwaves, Antennas and Propagation ; Volume 15, Issue 5 , 2021 , Pages 457-463 ; 17518725 (ISSN) Noorbakhsh, B ; Abdolali, A ; Janforooz, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    A method for reducing radar cross-section (RCS) of the slot array antenna by utilising the radar absorbing material, while preserving the radiation performance simultaneously, is proposed and discussed. The scheme is based on the implementation of the multilayer frequency selective surface-radar-absorbing material (RAM) capable of operation over a wide frequency band. The use of radar absorbing material on an antenna’s radiation screen causes a change in surface current, resulting in the radiation pattern of the antenna. Therefore, by designing the coating pattern of the radar absorbent material as a substrate and a capacitive patch as a unit cell on the antenna board, the reduction of 19 dB... 

    Strain effects on optical properties of linearly polarized resonant modes in the presence of monolayer graphene

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 277 , 2022 ; 09215107 (ISSN) Alidoust Ghatar, A ; Jahani, D ; Akhavan, O ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Recently, huge attention has been drawn to improve optical sensing devices based on photonic resonators in the presence of graphene. In this paper, based on the transfer matrix approach and TE polarization of the incident electromagnetic waves, we numerically evaluate the transmission and reflection spectra for one-dimensional photonic resonators and surface plasmon resonances with strained graphene, respectively. We proved that a relatively small strain field in graphene can modulate linearly polarized resonant modes within the photonic bandgap of the defective crystal. Moreover, we study the strain effects on the surface plasmon resonances created by the evanescent wave technique at the...