Loading...
Search for: electrochemical-growth
0.006 seconds

    Diffusion-controlled growth model for electrodeposited cobalt nanowires in highly ordered aluminum oxide membrane

    , Article ECS Transactions, 25 April 2010 through 30 April 2010, Vancouver, BC ; Volume 28, Issue 17 , 2010 , Pages 13-25 ; 19385862 (ISSN) ; 9781607681939 (ISBN) Ghahremaninezhad, A ; Dolati, A ; Sharif University of Technology
    2010
    Abstract
    This work studies the electrochemical growth behavior of cobalt nanowires in highly ordered aluminum oxide membrane. Considering the electrodeposition of metallic nanowires, cation concentration profile in each nano pore was calculated. With assumption of linear diffusion zone on the growing surface of nanowires, a modified Cottrell equation was evaluated. To confirm the model, the Co nanowires were electrodeposited into porous anodic aluminum oxide (AAO) templates and the mechanism of deposition was studied. Comparing the results of model and the experiments has proved the accuracy of the model. Also, it was observed that the growth of the Co nanowires was controlled mainly by diffusion... 

    A study on electrochemical growth behavior of the Co-Ni alloy nanowires in anodic aluminum oxide template

    , Article Journal of Alloys and Compounds ; Volume 480, Issue 2 , 2009 , Pages 275-278 ; 09258388 (ISSN) Ghahremaninezhad, A ; Dolati, A ; Sharif University of Technology
    2009
    Abstract
    This study shows the growth behavior of Co-Ni alloy nanowires in AAO template. Growth of nanowires consists of four different stages namely electronucleation, steady state growth, filling of pores, and coverage of filled nanowires and forming of a film on the template surface. TEM study of nanowires showed that the nanowires possess hemispherical head due to the preferable and more rapid growth phenomenon in central section of nanowires instead of edge sides. Studies on the relations between nanowires composition and ion concentration in solution showed that growth of nanowires is a diffusion-controlled process. The compositional, structural and magnetic properties of nanowires were... 

    DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode

    , Article Analytica Chimica Acta ; Vol. 836, issue , July , 2014 , p. 34-44 ; ISSN: 00032670 Fayazfar, H ; Afshar, A ; Dolati, M ; Dolati, A ; Sharif University of Technology
    Abstract
    For the first time, a new platform based on electrochemical growth of Au nanoparticles on aligned multi-walled carbon nanotubes (A-MWCNT) was developed for sensitive lable-free DNA detection of the TP53 gene mutation, one of the most popular genes in cancer research. Electrochemical impedance spectroscopy (EIS) was used to monitor the sequence-specific DNA hybridization events related to TP53 gene. Compared to the bare Ta or MWCNT/Ta electrodes, the synergistic interactions of vertically aligned MWCNT array and gold nanoparticles at modified electrode could improve the density of the probe DNA attachment and resulting the sensitivity of the DNA sensor greatly. Using EIS, over the extended...