Loading...
Search for: elastic-strain
0.009 seconds

    Analysis of micro-rotating disks based on the strain gradient elasticity

    , Article Acta Mechanica ; Vol. 225, issue. 7 , 2014 , pp. 1955-1965 ; ISSN: 00015970 Danesh, V ; Asghari, M ; Sharif University of Technology
    Abstract
    In this paper, the mechanical behavior of micro-rotating disks is investigated utilizing the strain gradient theory. The governing equation and boundary conditions are derived utilizing the variational method. The analytical solution for the derived equation is also presented. As a case study, some numerical results are presented to emphasize the importance of utilization of non-classical theories such as the strain gradient elasticity instead of the classical continuum theory in dealing with micro-rotating disks  

    Fluid-structure interaction analysis of airflow in pulmonary alveoli during normal breathing in healthy humans

    , Article Scientia Iranica ; Volume 23, Issue 4 , 2016 , Pages 1826-1836 ; 10263098 (ISSN) Monjezi, M ; Saidi, M. S ; Sharif University of Technology
    Sharif University of Technology 
    Abstract
    In this work, the human lung alveoli are idealized by a three dimensional honeycomb like geometry and a fluid-structure analysis is performed to study the normal breathing mechanics. In contrast to previous works in which the inlet flow rate is predefined, in this model, we have applied a negative pressure on the outside surface of the alveolus which causes air to flow in and out of the alveolus. The integration of the experimental curve of breathing flow rate was used to approximate the shape of the external applied pressure. Our Fluid-Structure Interaction (FSI) model has an advantage over other literature since it addresses both the fluid dynamics and solid mechanics, simultaneously. The... 

    Effects of elastic contributions on the evolution of nano-structure Al3Sc phase: A phase-field study

    , Article Scientia Iranica ; Volume 23, Issue 3 , 2016 , Pages 1539-1547 ; 10263098 (ISSN) Ebrahimi, Z ; Ebrahimi, H ; Sharif University of Technology
    Sharif University of Technology  2016
    Abstract
    A micromechanical phase-field model is utilized to study the evolution of nanostructure Al3Sc phase in Al-Sc alloy. We study the formation of Al3Sc precipitates in an Al-Sc alloy by using an elastic phase-field model. Since the precipitates of Al3Sc phase are fully coherent with the Al matrix, the elastic energy will have an inuence on the resulting morphology. We have studied the effects of elastic strain energies on shape evolution of Al3Sc phase, numerically. The simulated nano-structures evolve from spherical to cubic shapes. The equilibrium shape of the coherent Al3Sc phase is found to be determined by minimizing the sum of the elastic and interfacial energies through the phase-field... 

    Generalized nonlinear 3D Euler-Bernoulli beam theory

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 32, Issue 1 , 2008 , Pages 1-12 ; 10286284 (ISSN) Zohoor, H ; Khorsandijou, S. M ; Sharif University of Technology
    2008
    Abstract
    The issue of the new elastic terms discovered in the nonlinear dynamic model of an enhanced nonlinear 3D Euler-Bernoulli beam is discussed. While the elastic orientation is negligible, the nonlinear dynamic model governing tension-compression, torsion and two spatial bendings is presented. Considering this model, some new elastic terms can be identified in the variation of elastic potential energy in each bending motion equation, and in each transverse shear force. Due to the new terms, each term of a bending equation and a transverse shear force, finds a counterpart in the other bending equation and transverse shear force, but the equations remain asymmetric. The new terms have arisen,... 

    Thermo-elastic analysis of thick-walled cylinders made of Functionally Graded materials using the strain gradient elasticity

    , Article ASME 2010 Conference on Smart Materials, Adaptive Structures and Intelligent Systems, SMASIS 2010, 28 September 2010 through 1 October 2010 ; Volume 2 , 2010 , Pages 1-6 ; 9780791844168 (ISBN) Sadeghi, H ; Baghani, M ; Naghdabadi, R ; Aerospace Division ; Sharif University of Technology
    Abstract
    In this paper, strain gradient thermo-elasticity formulation for Functionally Graded (FG) thick-walled cylinders is presented. Elastic strain energy density function is considered to be a function of gradient of strain tensor in addition to the strain tensor. The material properties are assumed to vary according to power law in radial direction. Using the constitutive equations and equation of equilibrium in the cylindrical coordinates, fourth order non-homogenous governing equation for thermo-elastic analysis of thick-walled FG cylinders subjected to thermal and mechanical loadings is obtained and solved numerically. Results show that the intrinsic length parameter affects the stress... 

    Effect of specimen preparation techniques on dynamic properties of unsaturated fine-grained soil at high suctions

    , Article Canadian Geotechnical Journal ; Volume 54, Issue 9 , 2017 , Pages 1310-1319 ; 00083674 (ISSN) Ng, C. W. W ; Baghbanrezvan, S ; Sadeghi, H ; Zhou, C ; Jafarzadeh, F ; Sharif University of Technology
    Canadian Science Publishing  2017
    Abstract
    The seismic response of soil depends on proper evaluation and use of soil dynamic properties, including shear modulus and damping ratio at various strain levels. Despite extensive studies on the shear modulus and damping ratio of saturated soils, research on the dynamic properties of unsaturated fine-grained soils — especially at high suction — is limited. This study aims to investigate the dynamic properties of loess at a variety of initial states resulting from different specimen preparation techniques (reconstituted, recompacted, and intact) and their evolutions due to suction-induced desiccation. Results of resonant column tests show that at initial states, the specimen preparation... 

    Analysis of stress field of a screw dislocation inside an embedded nanowire using strain gradient elasticity

    , Article Scripta Materialia ; Volume 61, Issue 4 , 2009 , Pages 355-358 ; 13596462 (ISSN) Davoudi, K. M ; Gutkin, M. Yu ; Shodja, H. M ; Sharif University of Technology
    2009
    Abstract
    The stress field of a screw dislocation inside an embedded nanowire is considered within the theory of strain-gradient elasticity. It is shown that the stress singularity is removed and all stress components are continuous and smooth across the interface, in contrast with the results obtained within the classical theory of elasticity. The maximum magnitude of dislocation stress depends greatly on the dislocation position, the nanowire size, and the ratios of shear moduli and gradient coefficients of the matrix and nanowire materials. © 2009 Acta Materialia Inc  

    Analytical study of micro-rotating disks with angular acceleration on the basis of the strain gradient elasticity

    , Article Acta Mechanica ; Volume 230, Issue 9 , 2019 , Pages 3259-3278 ; 00015970 (ISSN) Bagheri, E ; Asghari, M ; Danesh, V ; Sharif University of Technology
    Springer-Verlag Wien  2019
    Abstract
    The small-scale effects on the mechanical responses of micro-rotating disks with angular acceleration are investigated based on the strain gradient theory, as one of the powerful non-classical continuum theories which have been developed to justify the empirical observations of mechanical behavior in small-scale structures and components. The differential equations governing motion of the micro-disk elements in radial and circumferential direction together with the corresponding boundary conditions are derived. Then, an analytical solution is presented for the components of the displacement field which can be used as a base for determination of the components of the stress field. In a... 

    Transient response of porous FG nanoplates subjected to various pulse loads based on nonlocal stress-strain gradient theory

    , Article European Journal of Mechanics, A/Solids ; Volume 74 , 2019 , Pages 210-220 ; 09977538 (ISSN) Mirjavadi, S ; Mohasel Afshari, B ; Barati, M. R ; Hamouda, A. M. S ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Based on nonlocal strain gradient theory (NSGT), transient behavior of a porous functionally graded (FG) nanoplate due to various impulse loads has been studied. The porous nanoplate has evenly and unevenly distributed pores inside its material structure. Impulse point loads are considered to be rectangular, triangular and sinusoidal types. These impulse loads lead to transient vibration of the nanoplate which is not studied before. NSGT introduces a nonlocal coefficient together with a strain gradient coefficient to characterize small size influences due to non-uniform stress and strain fields. Galerkin's approach has been performed to solve the governing equations and also inverse Laplace... 

    Small-scale oriented elasticity modeling of functionally graded rotating micro-disks with varying angular velocity in the context of the strain gradient theory

    , Article Acta Mechanica ; Volume 232, Issue 6 , 2021 , Pages 2395-2416 ; 00015970 (ISSN) Bagheri, E ; Asghari, M ; Kargarzadeh, A ; Badiee, M ; Sharif University of Technology
    Springer  2021
    Abstract
    During the varying angular speed timespans of the start or shutdown of rotating machinery, the machinery components may be subjected to intense mechanical loadings which should be taken into account by its fabricator in the designing processes. In the microscale rotating systems, where the angular velocity is typically very high, the importance of this issue is much higher. In this paper, a comprehensive strain-gradient elasticity formulation is presented for functionally graded rotating micro-disks under the effects of varying angular velocity. The gradation of the constituent material along the radial direction can be a helpful option to mitigate the stresses in rotating micro-disks under... 

    A strain gradient Timoshenko beam element: Application to MEMS

    , Article Acta Mechanica ; Vol. 226, issue. 2 , Jul , 2014 , pp. 505-525 ; ISSN: 00015970 Kahrobaiyan, M. H ; Asghari, M ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    The classical continuum theory not only underestimates the stiffness of microscale structures such as microbeams but is also unable to capture the size dependency, a phenomenon observed in these structures. Hence, the non-classical continuum theories such as the strain gradient elasticity have been developed. In this paper, a Timoshenko beam finite element is developed based on the strain gradient theory and employed to evaluate the mechanical behavior of microbeams used in microelectromechanical systems. The new beam element is a comprehensive beam element that recovers the formulations of strain gradient Euler–Bernoulli beam element, modified couple stress (another non-classical theory)... 

    A combined first principles and analytical determination of the modulus of cohesion, surface energy, and the additional constants in the second strain gradient elasticity

    , Article International Journal of Solids and Structures ; Volume 50, Issue 24 , 2013 , Pages 3967-3974 ; 00207683 (ISSN) Ojaghnezhad, F ; Shodja, H. M ; Sharif University of Technology
    2013
    Abstract
    Mindlin's (1965) second strain gradient theory due to its competency in capturing the effects of edges, corners, and surfaces is of particular interest. Formulation in this framework, in addition to the usual Lamé constants, requires the knowledge of sixteen additional materials constants. To date, there are no successful experimental techniques for measuring these material parameters which reflect the discrete nature of matter. The present work gives an accurate remedy for the atomistic calculations of these parameters by utilizing the first principles density functional theory (DFT) for the calculations of the atomic force constants combined with an analytical formulation. It will be shown... 

    Interface effects on elastic behavior of an edge dislocation in a core-shell nanowire embedded to an infinite matrix

    , Article International Journal of Solids and Structures ; Volume 50, Issue 7-8 , 2013 , Pages 1177-1186 ; 00207683 (ISSN) Gutkin, M. Y ; Enzevaee, C ; Shodja, H. M ; Sharif University of Technology
    2013
    Abstract
    The elastic behavior of an edge dislocation located inside the core of a core-shell nanowire which is embedded in an infinite matrix is studied within the surface/interface elasticity theory. The corresponding boundary value problem is solved exactly by using complex potential functions. An important parameter so-called interface characteristic parameter which has the dimension of length and is a combination of the interface moduli enters the formulations. The stress field of the dislocation, image force acting on the dislocation, and the dislocation strain energy is calculated by considering the interface effect. The introduced characteristic parameter allows the examination of the... 

    Micropolar hypo-elasticity

    , Article Archive of Applied Mechanics ; Volume 80, Issue 12 , December , 2010 , Pages 1449-1461 ; 09391533 (ISSN) Ramezani, S ; Naghdabadi, R ; Sharif University of Technology
    2010
    Abstract
    In this paper, the concept of hypo-elasticity is generalized to the micropolar continuum theory, and the general forms of the constitutive equations of the micropolar hypo-elastic materials are presented. A new co-rotational objective rate whose spin is the micropolar gyration tensor is introduced which describes the deformation of the material in view of an observer attached to the micro-structure. As special case, simplified versions of the proposed constitutive equations are given in which the same fourth-order elasticity tensors are used as in the micropolar linear elasticity. A 2-D finite element formulation for large elastic deformation of micropolar hypo-elastic media based on the... 

    A formulation for the characteristic lengths of fcc materials in first strain gradient elasticity via the Sutton-Chen potential

    , Article Philosophical Magazine ; Volume 90, Issue 14 , 2010 , Pages 1893-1913 ; 14786435 (ISSN) Shodja, H. M ; Tehranchi, A ; Sharif University of Technology
    Abstract
    The usual continuum theories are inadequate in predicting the mechanical behavior of solids in the presence of small defects and stress concentrators; it is well known that such continuum methods are unable to detect the change of the size of the inhomogeneities and defects. For these reasons various augmented continuum theories and strain gradient theories have been proposed in the literature. The major difficulty in implication of these theories lies in the lack of information about the additional material constants which appear in such theories. For fcc metals, for the calculation of the associated characteristic lengths which arise in first strain gradient theory, an atomistic approach... 

    A screw dislocation near a circular nano-inhomogeneity in gradient elasticity

    , Article International Journal of Solids and Structures ; Volume 47, Issue 6 , 2010 , Pages 741-750 ; 00207683 (ISSN) Davoudi, K. M ; Gutkin, M. Yu ; Shodja, H. M ; Sharif University of Technology
    Abstract
    A screw dislocation outside an infinite cylindrical nano-inhomogeneity of circular cross section is considered within the isotropic theory of gradient elasticity. Fields of total displacements, elastic and plastic distortions, elastic strains and stresses are derived and analyzed in detail. In contrast with the case of classical elasticity, the gradient solutions are shown to possess no singularities at the dislocation line. Moreover, all stress components are continuous and smooth at the interface unlike the classical solution. As a result, the image force exerted on the dislocation due to the differences in elastic and gradient constants of the matrix and inhomogeneity, remains finite when... 

    Pull-in criteria of a non-classical microbeam under electric field using homotopy method

    , Article Scientia Iranica ; Volume 25, Issue 1 , 2018 , Pages 175-185 ; 10263098 (ISSN) Derakhshan, R ; Ahmadian, M. T ; Firoozbakhsh, K ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    In this study, a homotopy analysis method was used to obtain analytic solutions to predict dynamic pull-in instability of an electrostatically-actuated microbeam. The nonlinear describing equation of a microbeam affected by an electric field, including the fringing field effect, was obtained based on strain gradient elasticity, couple stress, and classical theory. Influences of different parameters on dynamic pull-in instability were investigated. The equation of motion of a double-clamped microbeam was discretized and solved by using Galerkin's method via mode summation. The resulting non-linear differential equation was also solved by using the Homotopy Analysis Method (HAM). The influence... 

    Geometrically non-linear vibration of concrete shallow funicular shells

    , Article Proceedings of the Institution of Civil Engineers: Structures and Buildings ; Volume 174, Issue 3 , 2021 , Pages 169-180 ; 09650911 (ISSN) Sabermahany, H ; Mofid, M ; Daneshmand, N ; Sharif University of Technology
    ICE Publishing  2021
    Abstract
    This study deals with the geometrically non-linear vibration analysis of concrete shallow funicular shells of rectangular plan with four clamped edges under impulse loads. The shape of a concrete funicular shell is such that the shell is subjected to pure compression under its dead weight. Following the existing method presented for the linear vibration analysis, the geometrically non-linear vibration analysis is considered through the use of non-linear shallow shells theory. Each displacement component is expanded in a double Fourier series and the kinetic energy, the elastic strain energy and the virtual work done by external forces are calculated in terms of the displacement components.... 

    Calculation of the additional constants for fcc materials in second strain gradient elasticity: Behavior of a nano-size bernoulli-euler beam with surface effects

    , Article Journal of Applied Mechanics, Transactions ASME ; Volume 79, Issue 2 , 2012 ; 00218936 (ISSN) Shodja, H. M ; Ahmadpoor, F ; Tehranchi, A ; Sharif University of Technology
    2012
    Abstract
    In addition to enhancement of the results near the point of application of a concentrated load in the vicinity of nano-size defects, capturing surface effects in small structures, in the framework of second strain gradient elasticity is of particular interest. In this framework, sixteen additional material constants are revealed, incorporating the role of atomic structures of the elastic solid. In this work, the analytical formulations of these constants corresponding to fee metals are given in terms of the parameters of Sutton-Chen interatomic potential function. The constants for ten fcc metals are computed and tabulized. Moreover, the exact closed-form solution of the bending of a... 

    Fracture analysis of monolayer graphene sheets with double vacancy defects via MD simulation

    , Article Solid State Communications ; Volume 151, Issue 17 , 2011 , Pages 1141-1146 ; 00381098 (ISSN) Ansari, R ; Motevalli, B ; Montazeri, A ; Ajori, S ; Sharif University of Technology
    Abstract
    Carbon nanostructures such as carbon nanotubes (CNTs) and graphene sheets have attracted great attention due to their exceptionally high strength and elastic strain. These extraordinary mechanical properties, however, can be affected by the presence of defects in their structures. When a material contains multiple defects, it is expected that the stress concentration of them superposes if the separation distances of the defects are low, which causes a more reduction of the strength. On the other hand, it is believed that if the defects are far enough such that their affected areas are distinct, their behavior is similar to a material with single defect. In this article, molecular dynamics...