Loading...
Search for: elastic-properties
0.009 seconds
Total 32 records

    DNA Molecule in Confined Geometries

    , Ph.D. Dissertation Sharif University of Technology Salari, Hossein (Author) ; Ejtehadi, Mohammad Reza (Supervisor)
    Abstract
    DNA molecule is one of the most important macromolecules in cell, which carries genetic information for life. DNA is often in confined geometries, such as, packaging in cell and DNA-protein interactions. While DNA is nearly a stiff polymer, its elastic behaviour plays a crucial role on its functionalities.Therefore, investigating the elastic and mechanical properties of DNA is really important.The elastic behaviour of a long and free DNA can be predicted very accurately by ”worm-like chain“ (WLC) model. In WLC model, DNA is assumed as a elastic rod with harmonic potential of local bending and twist.Many structural properties of DNA have been ignored in this model. But in recent years, by... 

    Effective mechanical properties of unidirectional composites in the presence of imperfect interface

    , Article Archive of Applied Mechanics ; Vol. 84, issue. 6 , June , 2014 , pp. 807-819 ; Print ISSN: 0939-1533 Hosseini Kordkheili, S. A ; Toozandehjani, H ; Sharif University of Technology
    Abstract
    In this paper, the equivalent inclusion method is implemented to estimate the effective mechanical properties of unidirectional composites in the presence of an imperfect interface. For this purpose, a representative volume element containing three constituents, a matrix, and interface layer, and a fiber component, is considered. A periodic eigenstrain defined in terms of Fourier series is then employed to homogenize non-dilute multi-phase composites. In order to take into account the interphase imperfection effects on mechanical properties of composites, a stiffness parameter in terms of a matrix and interphase elastic modulus is introduced. Consistency conditions are also modified... 

    Elastic Properties of Wet Granular Material

    , M.Sc. Thesis Sharif University of Technology Shabannia Roknabadi, Mohammad Reza (Author) ; Rouhani, Shahin (Supervisor)
    Abstract
    To explain the dependence of sliding friction on or between the layers of wet sand, one first needs to have a rather good understanding of the elastic properties of wet granular material. Experimental work that has been done on the subject so far, has shown that these elastic properties have a peculiar dependence on the water volume fraction of the sand system. But till nowno theoretical model has been presented that could illustrate the physical causes of such findings. More specifically, these handful of theoretical models have not been able to explain the complex relationship between the shear modulus of sand and the water volume percentage. In this thesis at first the nature and... 

    Developing a Model for Simulation of Dynamic Behavior of Nano-beams

    , M.Sc. Thesis Sharif University of Technology Delafrouz, Pourya (Author) ; Nejat, Hossein (Supervisor)
    Abstract
    The utility of nano-beams in MEMs and NEMs has progressed a lot in recent years. Such systems have found wide spread use in sensors and actuators due to small size, low weight, high accuracy and low energy consumption. By a decrease in size of nano-beams, surface effect increases which makes the classical theories unable to modeling such beams. Therefore new models are required for evaluating the dynamic behavior of nano-beams. In this thesis we have attempted to develop a suitable Coarse-Grain model for analysis of such beams. At first a suitable Coarse-Grain mapping with determined Sutton-Chen potential parameters is introduced for FCC metals. In the next step, EAM is considered as... 

    Exploring Auxetic Metamaterials by Changing the Geometrical Parameters

    , M.Sc. Thesis Sharif University of Technology Ashouri, Amir (Author) ; Naghdabadi, Reza (Supervisor)
    Abstract
    The properties of metamaterials can be tailored through modification of their microstructures geometry. In this regard, a vast range of metamaterials have been designed. Auxetic metamaterials are a novel class of materials exhibiting the interesting characteristic of negative Poisson’s ratio. Theoretically, auxetic metamaterials have improved mechanical properties such as shear modulus and fracture toughness. The design and modeling of auxetic metamaterials is not completed yet. In order to exploit the interesting properties of auxetic metamaterials, their potential applications have been investigated in medical, sports, automobile and defense industries, so far. In the present work, the... 

    Nonlinear Vibration Analysis of Circular Microplate Based on Strain Gradient Theory

    , M.Sc. Thesis Sharif University of Technology Faghihi, Mohammad Amin (Author) ; Asghari, Mohsen (Supervisor)
    Abstract
    Nowadays the combination of mechanical and electronic systems in small scales is gaining attention. Micro electro-mechanical systems are widely used in various industries such as car manufacturing and electronic chips. In these devices, the most important and useful mechanical structures are beams and plates. Therefore, investigating the mechanical properties of these structures in very small scales (micro and nano) is of great importance. Decreasing the size to these scales leads to the dependence of the behavior of these structures to size. Accordingly, some theories for prediction of these behaviors have been presented, one of which is the strain gradient theory. This theory is used in... 

    Transient thermo-poroelastic analysis of drilling-induced mechanical damage in nonfractured rocks

    , Article Arabian Journal of Geosciences ; Volume 8, Issue 12 , 2015 , Pages 10803-10818 ; 18667511 (ISSN) Gomar, M ; Goodarznia, I ; Shadizadeh, S. R ; Sharif University of Technology
    Springer Verlag  2015
    Abstract
    Permeability variations in reservoirs and around boreholes are of great interest in petroleum engineering due to the fact that they can significantly affect reserve estimates, reservoir development, well production or injection rate, and the likely success of remedial actions of near-wellbore damage. A fully coupled transient thermo-poroelastic concept with and without rock mechanical damage models is employed to evaluate stress distribution and permeability variation around the boreholes and breakouts. The anisotropy concept is applied to permeability, rock modulus, and uniaxial compressive strength using Weibull distribution. The Mogi–Coulomb failure criterion is employed to model breakout... 

    Characterization of silicon surface elastic constants based on different interatomic potentials

    , Article Thin Solid Films ; Volume 626 , 2017 , Pages 104-109 ; 00406090 (ISSN) Nejat Pishkenari, H ; Rezaei, S ; Sharif University of Technology
    Abstract
    Mechanical properties of materials are an important factor in designing nanoscale systems. Several researches and experiments have shown that the mechanical properties of the nano-scale materials are different from those of bulk. One of the major reasons for this difference is that the ratio of surface to volume increases at the nano-scale, and the effects of free surfaces become very important. In this paper, we have measured the surface elastic constants of silicon crystalline structure using different interatomic potentials. The potentials employed here are EDIP (Environment-Dependent Interatomic Potential), Stillinger-Weber and Tersoff, and also different crystalline orientations are... 

    Size-Dependent Elastic Properties of Ultra-Thin Objects Containing a Nano-Inclusion or a Nano-Inhomogeneity

    , Ph.D. Dissertation Sharif University of Technology Pahlevani, Ladan (Author) ; Mohammadi Shoja, Hossein (Supervisor)
    Abstract
    The broad range of applicability of nano devices particularly in electronics, optoelectronics, and micro/ nano-electro- mechanical systems has drawn the attentions of the industrial and scientific communities of various disciplines. This work is devoted to study the effect of surface and interface elasticity in the analysis of the mechanical behavior of ultra-thin objects in the presence of some statical or dynamical loadings. Based on the fact that the surface-volume ratio increases in nano-scale, description of the behavior of such a small structure via usual classical theories, which generally neglect the surface/interface effect, ceases to hold. In the present study, first, a... 

    Whole cell mechanical property characterization based on mechanical properties of its cytoplasm and bio membrane

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 9 November 2012 through 15 November 2012 ; Volume 2 , November , 2012 , Pages 545-551 ; 9780791845189 (ISBN) Abbasi, A. A ; Ahmadian, M. T ; Sharif University of Technology
    2012
    Abstract
    Analysis and investigation of the relation between different parts of biological cells such as biomembrane, cytoplasm and nucleus can help to better understand their behaviors and material properties. In this paper, first, the whole elastic properties of mouse oocyte and embryo cells have been computed by inverse finite element and Levenberg-Marquardt optimization algorithm and second, using the derived mechanical properties and the mechanical properties of its bio membrane from the literature, the mechanical properties of its cytoplasm has been characterized. It has been assumed that the cell behavior is as continues, isotropic, nonlinear and homogenous material for modeling. Matching the... 

    Stress analysis of multilayer thin walled pipes with circular cut-outs

    , Article World Congress on Engineering 2016, WCE 2016, 29 June 2016 through 1 July 2016 ; Volume 2224 , 2016 , Pages 1146-1150 ; 20780958 (ISSN); 9789881404800 (ISBN) Kamalarajah, R ; Bull, J.W ; Chizari, M ; Ao S.I ; Ao S.I ; Gelman L ; Ao S.I ; Gelman L ; Hukins D.W.L ; Hunter A ; Korsunsky A.M ; et al.; IAENG Society of Artificial Intelligence; IAENG Society of Bioinformatics; IAENG Society of Computer Science; IAENG Society of Data Mining; IAENG Society of Electrical Engineering ; Sharif University of Technology
    Newswood Limited  2016
    Abstract
    A finite element analysis of a double layered shell with a circular hole is carried out with the computer aided engineering software Abaqus (Dassault Systèmes, FR). The model proposed has been used to perform a stress analysis on three pipes with different sized hole. Moreover, thermal expansion has been implemented in the testing. For the purpose of the research, the elastic properties of the materials have been considered and the results compared with the ones previously published in literature. The outcome of the investigation will benefit towards the design of optimal and sustainable pipes with circular cut outs  

    Mechanical properties of graphene oxide: A molecular dynamics study

    , Article Fullerenes Nanotubes and Carbon Nanostructures ; Volume 24, Issue 9 , 2016 , Pages 594-603 ; 1536383X (ISSN) Khoei, A. R ; Sarkari Khorrami, M ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    In this paper, the mechanical properties of graphene oxide are obtained using the molecular dynamics analysis, including the ultimate stress, Young modulus, shear modulus and elastic constants, and the results are compared with those of pristine graphene. It is observed that the increase of oxide agents (–O) and (–OH) leads to the increase of C–C bond length at each hexagonal lattice and as a result, alter the mechanical properties of the graphene sheet. It is shown that the elasticity modulus and ultimate tensile strength of graphene oxides (–O) and (–OH) decrease significantly causing the failure behavior of graphene sheet changes from the brittle to ductile. The results of shear loading... 

    Molecular dynamics study on axial elastic modulus of carbon nanoropes

    , Article Archives of Civil and Mechanical Engineering ; Volume 19, Issue 4 , 2019 , Pages 1127-1134 ; 16449665 (ISSN) Mehralian, F ; Firouz Abadi, R. D ; Norouzi, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Carbon nanoropes (CNRs) are of interest for a wide variety of nanotechnological applications. Since little attention has been paid to mechanical properties of CNRs, their axial elastic modulus is explored herein. Molecular dynamics (MDs) simulations are adopted for analysis of Young's modulus of CNRs. It is also shown that increase in the initial helical angle decreases Young's modulus; however, by increase in the number of CNTs and strands, different influence on Young's modulus emerges. Therefore, the highest value of Young's modulus obtained at the lower value of initial helical angle and consequently, Young's modulus of bundle of straight CNTs is higher than CNRs with hierarchical... 

    Prediction of in-plane elastic properties of graphene in the framework of first strain gradient theory

    , Article Meccanica ; Volume 54, Issue 1-2 , 2019 , Pages 299-310 ; 00256455 (ISSN) Hassanpour, S ; Mehralian, F ; Dehghani Firouz Abadi, R ; Borhan Panah, M. R ; Rahmanian, M ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In the present study, the in-plane elastic stiffness coefficients of graphene within the framework of first strain gradient theory are calculated on the basis of an accurate molecular mechanics model. To this end, a Wigner–Seitz primitive cell is adopted. Additionally, the first strain gradient theory for graphene with trigonal crystal system is formulated and the relation between elastic stiffness coefficients and molecular mechanics parameters are calculated. Thus, the ongoing research challenge on providing the accurate mechanical properties of graphene is addressed herein. Using results obtained, the in-plane free vibration of graphene is studied and a detailed numerical investigation is... 

    Prediction of in-plane elastic properties of graphene in the framework of first strain gradient theory

    , Article Meccanica ; Volume 54, Issue 1-2 , 2019 , Pages 299-310 ; 00256455 (ISSN) Hassanpour, S ; Mehralian, F ; Dehghani Firouz-Abadi, R ; Borhan Panah, M. R ; Rahmanian, M ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In the present study, the in-plane elastic stiffness coefficients of graphene within the framework of first strain gradient theory are calculated on the basis of an accurate molecular mechanics model. To this end, a Wigner–Seitz primitive cell is adopted. Additionally, the first strain gradient theory for graphene with trigonal crystal system is formulated and the relation between elastic stiffness coefficients and molecular mechanics parameters are calculated. Thus, the ongoing research challenge on providing the accurate mechanical properties of graphene is addressed herein. Using results obtained, the in-plane free vibration of graphene is studied and a detailed numerical investigation is... 

    Hybrid anisotropic pentamode mechanical metamaterial produced by additive manufacturing technique

    , Article Applied Physics Letters ; Volume 117, Issue 6 , 2020 Mohammadi, K ; Movahhedy, M. R ; Shishkovsky, I ; Hedayati, R ; Sharif University of Technology
    American Institute of Physics Inc  2020
    Abstract
    Pentamode metamaterials are a type of extremal designer metamaterials, which are able to demonstrate extremely high rigidity in one direction and extremely high compliance in other directions. Pentamodes can, therefore, be considered as building blocks of exotic materials with any arbitrarily selected thermodynamically admissible elasticity tensor. The pentamode lattices can then be envisioned to be combined to construct intermediate extremal materials, such as quadramodes, trimodes, and bimodes. In this study, we constructed several primary types of anisotropic pentamode lattices (with midpoint positioning of 10%, 15%, 20%, 25%, 30%, 35%, and 42% of the main unit cell diagonal) and then... 

    Determination of mechanical properties of FCC nano-beams based on molecular dynamics simulations

    , Article 5th International Symposium on Mechatronics and its Applications, ISMA 2008, Amman, 27 May 2008 through 29 May 2008 ; October , 2008 ; 9781424420346 (ISBN) Nejat Pishkenari, H ; Meghdari, A ; Hosseini, A. E ; Sharif University of Technology
    2008
    Abstract
    In this research, we have modeled nano-Beams using molecular dynamics. The scope of our study is FCC metals, therefore an appropriate inter-atomic potential for this kind of materials must be chosen. A multi-body long-range potential proposed by Sutton-Chen, which has been used in many physical investigations of FCC metals is applied in our study. Using conducted simulations, the different mechanical properties of material such as elastic modulus, shear modulus and poison's ratio are calculated. The results show that the elastic properties decrease with increase in nano cantilever size. ©2008 IEEE  

    Modeling the interphase layer between CNT and matrix in nanocomposites using nonlinear large deformation hierarchical multiscale

    , Article 4th International Conference on Multiscale Materials Modeling, MMM 2008, 27 October 2008 through 31 October 2008 ; 2008 , Pages 239-242 ; 9780615247816 (ISBN) Ghanbari, J ; Naghdabadi, R ; Sharif University of Technology
    Department of Scientific Computing, Florida State University  2008
    Abstract
    We have used a hierarchical multiscale modeling scheme for the analysis of carbon nanotube reinforced nanocomposites. This scheme consists of definition of two boundary value problems, one for macroscale (the scale in which the material exists homogeneously and we are interested in modeling the material behavior on that scale), and another for microscale (the scale in which the material becomes heterogeneous and microstructural constituents emerge). The coupling between these scales is done by using homogenization techniques. Using the presented scheme, we have studied carbon nanotube (CNT) reinforced composites behavior and the effects of an interphase layer between CNT and matrix material.... 

    Aero-thermoelastic stability of functionally graded plates

    , Article Composite Structures ; Volume 80, Issue 4 , 2007 , Pages 580-587 ; 02638223 (ISSN) Navazi, H. M ; Haddadpour, H ; Sharif University of Technology
    2007
    Abstract
    In this paper, an analytical investigation intended to determine the aero-thermoelastic stability margins of functionally graded panels is carried out. For this purpose, piston theory aerodynamics has been employed to model quasi-steady aerodynamic loading. The material properties of the plate are assumed to be graded continuously across the panel thickness. A simple power-law and the Mori-Tanaka scheme are used for estimating the effective material properties such as temperature-dependent thermoelastic properties. The effects of compressive in-plane loads and both uniform and through the thickness non-linear temperature distributions are also considered. Hamilton's principle is used to... 

    Design and characterization of an orthotropic accordion cellular honeycomb as one-dimensional morphing structures with enhanced properties

    , Article Journal of Sandwich Structures and Materials ; Volume 24, Issue 3 , 2022 , Pages 1726-1745 ; 10996362 (ISSN) Farrokhabadi, A ; Ashrafian, M. M ; Fotouhi, M ; Sharif University of Technology
    SAGE Publications Ltd  2022
    Abstract
    This study develops the governing equations and characterizes the mechanical properties of a new orthotropic accordion morphing honeycomb structure containing periodic arrays of U-type beams reinforced with glass fibers. Castigliano’s second theorem is modified to develop the analytical equations to predict the deformation behavior of a single orthotropic ply under a combined axial, bending, and shear loadings. Accordingly, the elastic properties of the orthotropic structure including elastic stiffness, shear stiffness, and in-plane Poisson’s ratios are calculated by the developed equations. The honeycomb structure is manufactured by 3D printing, and the samples are subjected to tensile...