Loading...
Search for: elastic-constants
0.01 seconds
Total 22 records

    Surface elasticity revisited in the context of second strain gradient theory

    , Article Mechanics of Materials ; Volume 93 , 2016 , Pages 220-237 ; 01676636 (ISSN) Ojaghnezhad, F ; Shodja, H. M ; Sharif University of Technology
    Elsevier 
    Abstract
    Surface/interface stresses, when notable, are closely associated with a surface/interface layer in which the interatomic bond lengths and charge density distribution differ remarkably from those of the bulk. The presence of such topographical defects as edges and corners amplifies the noted phenomena by large amounts. If the principal features of interest are such studies as the physics and mechanics of evolving microscopic-/nanoscopic-interfaces and the behavior of nano-sized structures which have a very large surface-to-volume ratio, traditional continuum theories cease to hold. It is for the treatment of such problems that augmented continuum approaches like second strain gradient and... 

    Determination of surface properties and elastic constants of FCC metals: A comparison among different EAM potentials in thin film and bulk scale

    , Article Materials Research Express ; Volume 6, Issue 1 , 2019 ; 20531591 (ISSN) Nejat Pishkenari, H ; Yousefi, F. S ; Taghibakhshi, A ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Three independent elastic constants C 11, C 12, and C 44 were calculated and compared using available potentials of eight different metals with FCC crystal structure; Gold, Silver, Copper, Nickel, Platinum, Palladium, Aluminum and Lead. In order to calculate the elastic constants, the second derivative of the energy density of each system was calculated with respect to different directions of strains. Each set of the elastic constants of the metals in bulk scale was compared with experimental results, and the average relative error was for each was calculated and compared with other available potentials. Then, using the Voigt-Reuss-Hill method, approximated values for Young and shear moduli... 

    Effects of couple stresses on anti-plane problems of piezoelectric media with inhomogeneities

    , Article European Journal of Mechanics, A/Solids ; Volume 26, Issue 4 , 2007 , Pages 647-658 ; 09977538 (ISSN) Shodja, H. M ; Ghazisaeidi, M ; Sharif University of Technology
    2007
    Abstract
    The examination of the effect of couple stresses on anti-plane electro-mechanical behaviour of piezoelectric media is of interest. The constitutive equations of piezoelectricity for a transversely isotropic piezoelectric medium of crystal class C6 v = 6   mm are derived in the context of couple stress elasticity. In this framework, a characteristic length appears in the formulation of anti-plane problems, by which examination of the size effect is possible. Also stemming from this approach is a new elasticity constant defined as the ratio of couple stress to the curvature, which based on the assumption of positive definiteness of the internal energy density, must be positive. For... 

    A Nanoscopic Approach to the Determination of the Elastic Constants of Cubic Crystals in first Strain Gradient Theory

    , M.Sc. Thesis Sharif University of Technology Moosavian, Hashem (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    In many problems, the traditional elasticity cannot predict phenomenon such as nano-scale defects, surface effects, and stress concentration correctly. For example, analysis near the crack tip, dislocation and inhomogeneity shows inconsistent results because in this case values of stress go to infinity. Therefore for solving these kinds of problems, higher order continuum theories were introduced. The appearance of additional constants in the equations of motion can represent the atomic nature of materials. Furthermore, they can be utilized for determining properties of materials vibration with high frequency, granular materials, and polymers.First strain gradient theory introduced by... 

    Bonded boojum-colloids in nematic liquid crystals

    , Article Langmuir ; Volume 29, Issue 33 , 2013 , Pages 10360-10367 ; 07437463 (ISSN) Eskandari, Z ; Silvestre, N. M ; Telo Da Gama, M. M ; Sharif University of Technology
    2013
    Abstract
    We investigate bonded boojum-colloids in nematic liquid crystals, configurations where two colloids with planar degenerate anchoring are double-bonded through line defects connecting their surfaces. This bonded structure promotes the formation of linear chains aligned with the nematic director. We show that the bonded configuration is the global minimum in systems that favor twist deformations. In addition, we investigate the influence of confinement on the stability of bonded boojum-colloids. Although the unbonded colloid configuration, where the colloids bundle at oblique angles, is favored by confinement, the bonded configuration is again the global minimum for liquid crystals with... 

    Characterization of silicon surface elastic constants based on different interatomic potentials

    , Article Thin Solid Films ; Volume 626 , 2017 , Pages 104-109 ; 00406090 (ISSN) Nejat Pishkenari, H ; Rezaei, S ; Sharif University of Technology
    Abstract
    Mechanical properties of materials are an important factor in designing nanoscale systems. Several researches and experiments have shown that the mechanical properties of the nano-scale materials are different from those of bulk. One of the major reasons for this difference is that the ratio of surface to volume increases at the nano-scale, and the effects of free surfaces become very important. In this paper, we have measured the surface elastic constants of silicon crystalline structure using different interatomic potentials. The potentials employed here are EDIP (Environment-Dependent Interatomic Potential), Stillinger-Weber and Tersoff, and also different crystalline orientations are... 

    A hierarchical thermo-mechanical multi-scale technique for modeling of edge dislocations in nano-crystalline structures

    , Article Computational Materials Science ; Volume 141 , 2018 , Pages 360-374 ; 09270256 (ISSN) Jahanshahi, M ; Khoei, A. R ; Heidarzadeh, N ; Jafarian, N ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this paper, a hierarchical multi-scale technique is developed to investigate the thermo-mechanical behavior of nano-crystalline structures in the presence of edge dislocations. The primary edge dislocations are generated by proper adjustment of atomic positions to resemble discrete dislocations. The interatomic potential used to perform atomistic simulation is based on the Finnis-Sinclair embedded-atom method as many-body potential and, the Nose-Hoover thermostat is employed to control the effect of temperature. The strain energy density function is obtained for various representative volume elements under biaxial and shear loadings by fitting a fourth order polynomial in the atomistic... 

    Surface characterization of face-centered cubic crystals

    , Article Mechanics of Materials ; Volume 129 , 2019 , Pages 15-22 ; 01676636 (ISSN) Shodja, H. M ; Enzevaee, C ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    To date, the examination of surface energy and surface layer relaxation has been the subject of several experimental and simulation works, whereas evaluation of surface residual stresses and surface elastic constants has received very little attention. In addition to the fundamental importance of these properties in the understanding of such phenomena as crystal equilibrium shape, surface roughening and segregation, they are also crucial for use in the theoretical studies based on continuum theory of elastic material surfaces. This work focuses on developing a theoretical approach for the calculations of the surface residual stress and surface elastic constants for (100) planes of fcc... 

    Surface characterization of face-centered cubic crystals

    , Article Mechanics of Materials ; Volume 129 , 2019 , Pages 15-22 ; 01676636 (ISSN) Shodja, H. M ; Enzevaee, C ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    To date, the examination of surface energy and surface layer relaxation has been the subject of several experimental and simulation works, whereas evaluation of surface residual stresses and surface elastic constants has received very little attention. In addition to the fundamental importance of these properties in the understanding of such phenomena as crystal equilibrium shape, surface roughening and segregation, they are also crucial for use in the theoretical studies based on continuum theory of elastic material surfaces. This work focuses on developing a theoretical approach for the calculations of the surface residual stress and surface elastic constants for (100) planes of fcc... 

    Determination of Elastic Surface Constants for fcc Materials and their Applications in Nanostructures

    , Ph.D. Dissertation Sharif University of Technology Enzevaee, Camelia (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    This work focuses on developing a theoretical approach for the calculations of the surface elastic constants for (100) planes of fcc crystals. Using this method, the surface elastic constants, as well as the surface residual stress of the (100) planes of Al, Ag, Ni, Pt, and Cu fcc crystals, are evaluated using quantum calculations and VASP code. Surface effects are important in nanostructures and the considered metals are the most applicable ones in nanostructures especially in optic and electronic fields. For verification of the obtained values for surface elastic constants and residual stress, other surface parameters including the equilibrium lattice parameter, the energy per atom of the... 

    Calculating Interface Energy, Residual Stresses and Elastic Constants of Non-magnetic FCC Metals

    , M.Sc. Thesis Sharif University of Technology Lotfian, Kimia (Author) ; Mohammadi Shoja, Hossein (Supervisor)
    Abstract
    The investigation of interface residual stress and interface elastic moduli tensors plays a crucial role in enhancing the conventional theory of elasticity. These considerations allow us to account for size effects and eliminate nonphysical singularities near defects. The primary objective of this study is to comprehensively calculate interface energy, residual stress components, and interface elastic moduli tensors for various interfaces between non-magnetic fcc metals using density functional theory (DFT). We achieve this by performing ab initio DFT calculations to determine the interface energies for different coherent interfaces among these metals. Subsequently, these energies are... 

    A study on the plastic properties of unidirectional nanocomposites with interface energy effects

    , Article Acta Mechanica ; Volume 224, Issue 4 , 2013 , Pages 789-809 ; 00015970 (ISSN) Moshtaghin, A. F ; Naghdabadi, R ; Asghari, M ; Sharif University of Technology
    2013
    Abstract
    In this paper, for obtaining an overall size-dependent yield function for nanocomposites containing aligned cylindrical nanofibers, the effects of interface residual stress and interface elasticity are taken into account within a micromechanical framework. Toward this goal, the modified Hill's condition is used, and then, in order to consider effects of the interface residual stress, strains are decomposed into two parts, a part due to the external loadings and the other due to the interface residual stress. Next, utilizing the field fluctuation method, an overall yield function containing effective elastic constants of the material is derived and then simplified for practical loading... 

    Axisymmetric response of a bi-material full-space reinforced by an interfacial thin film

    , Article International Journal of Solids and Structures ; Volume 90 , July , 2016 , Pages 251–260 ; 00207683 (ISSN) Ahmadi, S. F ; Samea, P ; Eskandari, M ; Sharif University of Technology
    Elsevier Ltd  2016
    Abstract
    Analytical treatment of a linear elastic isotropic bi-material full-space reinforced by an interfacial thin film under axisymmetric normal loading is addressed. The thin film is modeled as an extensible membrane perfectly bonded to the half-spaces. By virtue of Love's potential function and Hankel integral transform, elastic fields of the system are explicitly written in the form of semi-infinite line integrals. The analytical results are verified by the special cases corresponding to the surface stiffened half-space and classical bi-material problem. The limiting cases of reinforced homogeneous full-space and inextensible membrane are presented and discussed. The proposed formulation is... 

    Mechanical properties of graphene oxide: A molecular dynamics study

    , Article Fullerenes Nanotubes and Carbon Nanostructures ; Volume 24, Issue 9 , 2016 , Pages 594-603 ; 1536383X (ISSN) Khoei, A. R ; Sarkari Khorrami, M ; Sharif University of Technology
    Taylor and Francis Inc 
    Abstract
    In this paper, the mechanical properties of graphene oxide are obtained using the molecular dynamics analysis, including the ultimate stress, Young modulus, shear modulus and elastic constants, and the results are compared with those of pristine graphene. It is observed that the increase of oxide agents (–O) and (–OH) leads to the increase of C–C bond length at each hexagonal lattice and as a result, alter the mechanical properties of the graphene sheet. It is shown that the elasticity modulus and ultimate tensile strength of graphene oxides (–O) and (–OH) decrease significantly causing the failure behavior of graphene sheet changes from the brittle to ductile. The results of shear loading... 

    Modeling the interphase region in carbon nanotube-reinforced polymer nanocomposites

    , Article Polymer Composites ; 2018 ; 02728397 (ISSN) Amraei, J ; Jam, J. E ; Arab, B ; Firouz-Abadi, R. D ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    Carbon nanotubes are regarded as ideal fillers for polymeric materials due to their excellent mechanical properties. Mechanical analysis without consideration of nanotube–matrix interphase, may not give precise predictions. In this work, the impacts of interphase on the behavior of polymer-based nanocomposites are studied. For this purpose, a closed-form micromechanical interphase model considering the diameter of nanotube, the thickness of interphase, and mechanical properties of nanotube and polymer is proposed to estimate the overall mechanical properties of nanotube-reinforced polymer nanocomposites. Furthermore, the effective elastic constants of the nanocomposites for a wide range of... 

    Modeling the interphase region in carbon nanotube-reinforced polymer nanocomposites

    , Article Polymer Composites ; Volume 40, Issue S2 , 2019 , Pages E1219-E1234 ; 02728397 (ISSN) Amraei, J ; Jam, J. E ; Arab, B ; Firouz Abadi, R. D ; Sharif University of Technology
    John Wiley and Sons Inc  2019
    Abstract
    Carbon nanotubes are regarded as ideal fillers for polymeric materials due to their excellent mechanical properties. Mechanical analysis without consideration of nanotube–matrix interphase, may not give precise predictions. In this work, the impacts of interphase on the behavior of polymer-based nanocomposites are studied. For this purpose, a closed-form micromechanical interphase model considering the diameter of nanotube, the thickness of interphase, and mechanical properties of nanotube and polymer is proposed to estimate the overall mechanical properties of nanotube-reinforced polymer nanocomposites. Furthermore, the effective elastic constants of the nanocomposites for a wide range of... 

    Compressive modulus and deformation mechanisms of 3DG foams: Experimental investigation and multiscale modeling

    , Article Nanotechnology ; Volume 32, Issue 48 , 2021 ; 09574484 (ISSN) Mahdavi, S. M ; Adibnazari, S ; Del Monte, F ; Gutiérrez, M. C ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    Due to the wide applications of three-dimensional graphene (3DG) foam in bio-sensors, stretchable electronics, and conductive polymer composites, predicting its mechanical behavior is of paramount importance. In this paper, a novel multiscale finite element model is proposed to predict the compressive modulus of 3DG foams with various densities. It considers the effects of pore size and structure and the thickness of graphene walls on 3DG foams' overall behavior. According to the scanning electron microscope images, a unit cell is selected in the microscale step to represent the incidental arrangement of graphene sheets in 3DG foams. After derivation of equivalent elastic constants of the... 

    A combined first principles and analytical treatment for determination of the surface elastic constants: Application to Si(001) ideal and reconstructed surfaces

    , Article Philosophical Magazine Letters ; Volume 92, Issue 1 , Sep , 2012 , Pages 7-19 ; 09500839 (ISSN) Ojaghnezhad, F ; Shodja, H. M ; Sharif University of Technology
    2012
    Abstract
    Behavior of nanostructures, which are characterized by a large surface-to-volume ratio, is greatly influenced by their surface parameters, such as surface elastic moduli tensor. Accurate determination of the surface elastic constants by first principles is of particular interest. To this end, through consideration of the fundamental thermodynamic arguments for free solid surfaces, an analytical formulation for the change in specific Helmholtz surface free energy is developed. Relating this formulation to the corresponding energy calculated via first principles leads to the determination of the surface elastic moduli tensor. The surface mechanical properties, namely surface energy, surface... 

    Analytical study of electro-elastic fields in quantum nanostructure solar cells: the inter-nanostructure couplings and geometrical effects

    , Article Acta Mechanica ; Volume 229, Issue 7 , 2018 , Pages 3089-3106 ; 00015970 (ISSN) Rashidinejad, E ; Naderi, A. A ; Sharif University of Technology
    Springer-Verlag Wien  2018
    Abstract
    Recent investigations on multifunctional piezoelectric semiconductors have shown their excellent potential as photovoltaic components in high-efficiency third-generation quantum nanostructure (QNS) solar cells. The current work is devoted to studying the electro-elastic behavior of high-density QNS photovoltaic semiconductors within which initial mismatch strains of arrays of quantum dots (QDs) or quantum wires (QWRs) induce coupled electro-mechanical fields. The inter-nanostructure couplings which are of great importance in high-density QNS arrays are incorporated in the presented analytical framework. In practice, QNSs with different geometries such as spherical, cuboidal, or pyramidal QDs... 

    Mindlin–Eringen anisotropic micromorphic elasticity and lattice dynamics representation

    , Article Philosophical Magazine ; Volume 100, Issue 2 , 2020 , Pages 157-193 Moosavian, H ; Shodja, H. M ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    To account for certain essential features of material such as dispersive behaviour and optical branches in dispersion curves, a fundamental departure from classical elasticity to polar theories is required. Among the polar theories, micromorphic elasticity of appropriate grades and anisotropy is capable of capturing these physical phenomena completely. In the mathematical framework of micromorphic elasticity, in addition to the traditional elastic constants, some additional constants are introduced in the pertinent governing equations of motion. A precise evaluation of the numerical values of the aforementioned elastic constants in the realm of the experimentations poses serious...