Loading...
Search for: eigenvalue-decomposition
0.009 seconds

    MIMO Radars Waveform Design

    , M.Sc. Thesis Sharif University of Technology Shadi, Kamal (Author) ; Behnia, F (Supervisor)
    Abstract
    MIMO radar is a next generation radar which transmits arbitrary waveforms at each one of its apertures. It has been shown that design of waveforms for MIMO radars in order to synthesize a desired spatial beampattern, is mapped into a waveform correlation matrix (R) design in the narrowband case. Therefore, waveform design in MIMO radar for beamforming could be broken into two steps, namely correlation matrix design and waveform synthesis for achieving given R. As of now, given a desired beampattern or estimated location information of targets, calculating R has been modeled as an optimization problem like SDP. Also, in some special cases like rectangular beampattern, close form solutions for... 

    Blind Steganalysis Based on Multi- resolution Transforms

    , M.Sc. Thesis Sharif University of Technology Zohourian, Mehdi (Author) ; Ghaemmaghami, Shahrokh (Supervisor) ; Gholampour, Iman (Supervisor)
    Abstract
    Blind image steganalysis is a technique used for detecting the existence of the data hidden in an image, where no information about the stenographic algorithm is available or usable. In this way, an important problem is to find sensitive features which make noticeable statistical distinction between cover and stego images. New steganalysis methods based on multi-resolution transform, specifically the wavelet and the contourlet transforms, have been proposed in this thesis in order to enhance the detection accuracy of system especially at low embedding rates. In fact, multi-resolution transforms are powerful space-frequency analysis tools that have been found quite successful in detection of... 

    MIMO radar beamforming using orthogonal decomposition of correlation matrix

    , Article Circuits, Systems, and Signal Processing ; Volume 32, Issue 4 , 2013 , Pages 1791-1809 ; 0278081X (ISSN) Shadi, K ; Behnia, F ; Sharif University of Technology
    2013
    Abstract
    MIMO radar is the next generation radar which transmits arbitrary waveforms at each one of its apertures. It has been shown that the design of waveforms for MIMO radars in order to synthesize a desired spatial beampattern is mapped into a waveform correlation matrix R design in the narrowband case. As of now, given a desired beampattern or estimated locations information of targets, calculating R has been modeled as an optimization problem like semi-definite programming. Also, in some special cases like rectangular beampattern, closed-form solutions for R has been proposed. In this paper, we introduce a fast algorithm which is capable of designing R in order to achieve more arbitrary... 

    Noise cancelation of epileptic interictal EEG data based on generalized eigenvalue decomposition

    , Article 2012 35th International Conference on Telecommunications and Signal Processing, TSP 2012 - Proceedings ; 2012 , Pages 591-595 ; 9781467311182 (ISBN) Hajipour, S ; Shamsollahi, M. B ; Albera, L ; Merlet, I ; Sharif University of Technology
    2012
    Abstract
    Denoising is an important preprocessing stage in some Electroencephalography (EEG) applications such as epileptic source localization. In this paper, we propose a new algorithm for denoising the interictal EEG data. The proposed algorithm is based on Generalized Eigenvalue Decomposition of two covariance matrices of the observations. Since one of these matrices is related to the spike durations, we should estimate the occurrence time of the spike peaks and the exact spike durations. To this end, we propose a spike detection algorithm which is based on the available spike detection methods. The comparison of the results of the proposed algorithm with the results of two well-known ICA... 

    Improve Performance of Higher Order Statistics in Spatial and Frequency Domains in Blind Image Steganalysis

    , M.Sc. Thesis Sharif University of Technology Shakeri, Ehsan (Author) ; Ghaemmaghami, Shahrokh (Supervisor)
    Abstract
    Blind image steganalysis is a technique used to, which require no prior information about the steganographic method applied to the stego im- age, determine whether the image contains an embedded message or not. The basic idea of blind steganalysis is to extract some features sensitive to information hiding, and then exploit classifiers for judging whether a given test image contains a secret message.The main focus of this research is to design an choose features sen-sitive to the embedding changes. In fact, we use high order moments in different domains, such as spatial, DCT and multi-resolution do-main, in order to improve the performance of existing steganalyzers.Accordingly, First, we... 

    Improving the Performance of Graph Filters and Learnable Graph Filters in Graph Neural Networks

    , M.Sc. Thesis Sharif University of Technology Fakhar, Aali (Author) ; Babaiezadeh, Masoud (Supervisor)
    Abstract
    Graph signals are sets of values residing on sets of nodes that are connected via edges. Graph Neural Networks (GNNs) are a type of machine learning model for working with graph-structured data, such as graph signals. GNNs have applications in graph classification, node classification, and link prediction. They can be thought of as learnable filters. In this thesis, our focus is on graph filters and enhancing the performance of GNNs. In the first part, we aim to reduce computational costs in graph signal processing, particularly in graph filters. We explore methods to transform signals to the frequency domain with lower computational cost. In the latter part, we examine regulations in... 

    Transmit beampattern synthesis using eigenvalue decomposition in MIMO radar

    , Article ICICS 2011 - 8th International Conference on Information, Communications and Signal Processing, 13 December 2011 through 16 December 2011 ; December , 2011 , Page(s): 1 - 5 ; 9781457700309 (ISBN) Shadi, K ; Behnia, F ; Sharif University of Technology
    2011
    Abstract
    MIMO radar is the next generation radar which transmits arbitrary waveforms at each one of its apertures. It has been shown that design of waveforms for MIMO radars in order to synthesize a desired spatial beampattern is mapped into a waveform correlation matrix (R) design in the narrowband case. Searching for desired R has been modeled as a convex optimization problem which demands considerable processing power. There are also some close form solutions for special cases like rectangular beampatterns. Here we deal with the problem from a matrix eigenvalue theory perspective and show how close form solutions can be found for more general cases relaxing high computational power demand. Our... 

    Interictal EEG noise cancellation: GEVD and DSS based approaches versus ICA and DCCA based methods

    , Article IRBM ; Volume 36, Issue 1 , 2015 , Pages 20-32 ; 19590318 (ISSN) Hajipour Sardouie, S ; Shamsollahi, M. B ; Albera, L ; Merlet, I ; Sharif University of Technology
    Elsevier Masson SAS  2015
    Abstract
    Denoising is an important preprocessing stage in some ElectroEncephaloGraphy (EEG) applications. For this purpose, Blind Source Separation (BSS) methods, such as Independent Component Analysis (ICA) and Decorrelated and Colored Component Analysis (DCCA), are commonly used. Although ICA and DCCA-based methods are powerful tools to extract sources of interest, the procedure of eliminating the effect of sources of non-interest is usually manual. It should be noted that some methods for automatic selection of artifact sources after BSS methods exist, although they imply a training supervised step. On the other hand, in cases where there are some a prioriinformation about the subspace of... 

    Multiple antenna spectrum sensing in cognitive radios

    , Article IEEE Transactions on Wireless Communications ; Volume 9, Issue 2 , 2010 , Pages 814-823 ; 15361276 (ISSN) Taherpour, A ; Nasiri-Kenari, M ; Gazor, S ; Sharif University of Technology
    2010
    Abstract
    In this paper, we consider the problem of spectrum sensing by using multiple antenna in cognitive radios when the noise and the primary user signal are assumed as independent complex zero-mean Gaussian random signals. The optimal multiple antenna spectrum sensing detector needs to know the channel gains, noise variance, and primary user signal variance. In practice some or all of these parameters may be unknown, so we derive the Generalized Likelihood Ratio (GLR) detectors under these circumstances. The proposed GLR detector, in which all the parameters are unknown, is a blind and invariant detector with a low computational complexity. We also analytically compute the missed detection and... 

    Effect of unitary transformation on Bayesian information criterion for source numbering in array processing

    , Article IET Signal Processing ; Volume 13, Issue 7 , 2019 , Pages 670-678 ; 17519675 (ISSN) Johnny, M ; Aref, M. R ; Razzazi, F ; Sharif University of Technology
    Institution of Engineering and Technology  2019
    Abstract
    An approach based on unitary transformation for the problem of estimating the number of signals is proposed in this study. Among the information theoretic criteria, the authors focus on the conventional Bayesian information criterion (BIC) in the presence of a uniform linear array. The sample covariance matrix of this array is transformed into the real symmetric one by using a unitary transformation. This real symmetric matrix has real eigenvalues and eigenvectors. Therefore its eigenvalue decomposition needs only real computations. Since the eigenvalues of this real symmetric matrix are equal to the eigenvalues of the sample covariance matrix, by replacing them in BIC formula, the term... 

    MR artifact reduction in the simultaneous acquisition of EEG and fMRI of epileptic patients

    , Article 16th European Signal Processing Conference, EUSIPCO 2008, Lausanne, 25 August 2008 through 29 August 2008 ; 2008 ; 22195491 (ISSN) Amini, L ; Sameni, R ; Jutten, C ; Hossein Zadeh, G. A ; Soltanian Zadeh, H ; Sharif University of Technology
    2008
    Abstract
    Integrating high spatial resolution of functional magnetic resonance imaging (fMRI) and high temporal resolution of electroencephalogram (EEG) is promising in simultaneous EEG and fMRI analysis, especially for epileptic patients. The EEG recorded inside an MR scanner is interfered with MR artifacts. In this article, we propose new artifact reduction approaches and compare them with the conventional artifact reduction methods. Our proposed approaches are based on generalized eigenvalue decomposition (GEVD) and median filtering. The proposed methods are applied on experimental simultaneous EEG and fMRI recordings of an epileptic patient. The results show significant improvement over... 

    Image Steganalysis of Low Rate Embedding in Spatial Domain

    , Ph.D. Dissertation Sharif University of Technology Farhat, Farshid (Author) ; Ghaemmaghami, Shahrokh (Supervisor) ; Aref, Mohammad Reza (Co-Advisor)
    Abstract
    LSB embedding in spatial domain with very low rate can be easily performed and its detection in spite of many researches is very hard, while BOSS competition has been held to break an adaptive embedding algorithm with low rate. Thus, proposing powerful steganalyzer of very low rate in spatial domain is highly requested. In this thesis it has been tried to present some algorithms to detect secret message with very low rate in spatial domain using eigenvalues analysis and relative auto-correlation of image.First approach is based on the analysis of the eigenvalues of the cover correlation matrix that we used for the first time. Image partitioning, correlation function computation,... 

    Direct synthesis of fixed-order h∞ controllers

    , Article IEEE Transactions on Automatic Control ; Volume 60, Issue 10 , July , 2015 , Pages 2704-2709 ; 00189286 (ISSN) Babazadeh, M ; Nobakhti, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    This technical note considers the fixed-order H∞ output feedback control design problem for linear time invariant (LTI)systems. The objective is to design a fixed-order controller with guaranteed stability and closed-loop H∞ performance. This problem is NP-hard due to the non-convex rank constraint which appears in the formulation. We propose an algorithm for non-iterative direct synthesis (NODS) of reduced order robust controllers. NODS entails initial computation of two positive-definite matrices via full-order convex LMI conditions. These are then utilized by appropriate eigenvalue decomposition to directly obtain a suboptimal convex formulation for the fixed-order controller  

    Denoising of ictal EEG data using semi-blind source separation methods based on time-frequency priors

    , Article IEEE Journal of Biomedical and Health Informatics ; Volume 19, Issue 3 , July , 2015 , Pages 839-847 ; 21682194 (ISSN) Hajipour Sardouie, S ; Shamsollahi, M. B ; Albera, L ; Merlet, I ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2015
    Abstract
    Removing muscle activity from ictal ElectroEncephaloGram (EEG) data is an essential preprocessing step in diagnosis and study of epileptic disorders. Indeed, at the very beginning of seizures, ictal EEG has a low amplitude and its morphology in the time domain is quite similar to muscular activity. Contrary to the time domain, ictal signals have specific characteristics in the time-frequency domain. In this paper, we use the time-frequency signature of ictal discharges as a priori information on the sources of interest. To extract the time-frequency signature of ictal sources, we use the Canonical Correlation Analysis (CCA) method. Then, we propose two time-frequency based semi-blind source... 

    Ictal EEG signal denoising by combination of a semi-blind source separation method and multiscale PCA

    , Article 2016 23rd Iranian Conference on Biomedical Engineering and 2016 1st International Iranian Conference on Biomedical Engineering, ICBME 2016, 23 November 2016 through 25 November 2016 ; 2017 , Pages 226-231 ; 9781509034529 (ISBN) Pouranbarani, E ; Hajipour Sardoubie, S ; Shamsollahi, M. B ; Sharif University of Technology
    Abstract
    Contamination of ictal Electroencephalogram (EEG) signals by muscle artifacts is one of the critical issues related to clinically diagnosing seizure. Over the past decade, several methods have been proposed in time, frequency and time-frequency domain to accurately isolate ictal EEG activities from artifacts. Among denoising approaches Canonical Correlation Analysis (CCA) and Independent Component Analysis (ICA) are widely used. Denoising based on Generalized EigenValue Decomposition (GEVD) is one of the Semi-Blind Source Separation (SBSS) methods which has been recently proposed. In the GEVD-based method, a couple of time-frequency covariance matrices are used. These time-frequency (TF)... 

    Multichannel electrocardiogram decomposition using periodic component analysis

    , Article IEEE Transactions on Biomedical Engineering ; Volume 55, Issue 8 , August , 2008 , Pages 1935-1940 ; 00189294 (ISSN) Sameni, R ; Jutten, C ; Shamsollahi, M. B ; Sharif University of Technology
    2008
    Abstract
    In this letter, we propose the application of the generalized eigenvalue decomposition for the decomposition of multichannel electrocardiogram (ECG) recordings. The proposed method uses a modified version of a previously presented measure of periodicity and a phase-wrapping of the RR-interval, for extracting the "most periodic" linear mixtures of a recorded dataset. It is shown that the method is an improved extension of conventional source separation techniques, specifically customized for ECG signals. The method is therefore of special interest for the decomposition and compression of multichannel ECG, and for the removal of maternal ECG artifacts from fetal ECG recordings. © 2006 IEEE  

    Extracting single trial visual evoked potentials using iterative generalized eigen value decomposition

    , Article Proceedings of the 8th IEEE International Symposium on Signal Processing and Information Technology, ISSPIT 2008, 16 December 2008 through 19 December 2008, Sarajevo ; 2008 , Pages 233-237 ; 9781424435555 (ISBN) Hajipour, S ; Shamsollahi, M. B ; Mamaghanian, H ; Abootalebi, V ; IEEE Signal Processing Society and IEEE Computer Society ; Sharif University of Technology
    2008
    Abstract
    The activity generated in the brain in response to external stimulations which is named the evoked potential (EP) is typically buried in the background EEG. Because of the low signal to noise ratio ofEPs, it is difficult to record single trial evoked potentials. The traditional technique which is based on ensemble averaging destroys the dynamic information of single trials. In this paper, a new method has been proposed based on generalized eigen value decomposition to extract single trial EPs from single channel EEG recordings. The extraction of the N75-P100-N135 complex in simulated and actual visual evoked potentials is mainly taken under consideration. To illustrate the effectiveness of... 

    Efficient, Fair, and QoS-Aware policies for wirelessly powered communication networks

    , Article IEEE Transactions on Communications ; Volume 68, Issue 9 , 2020 , Pages 5892-5907 Rezaei, R ; Omidvar, N ; Movahednasab, M ; Pakravan, M. R ; Sun, S ; Guan, Y. L ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    In this paper, we propose efficient wireless power transfer (WPT) policies for various practical scenarios in wirelessly powered communication networks (WPCNs). First, we consider WPT from an energy access point (E-AP) to multiple energy receivers (E-Rs). We formulate the problem of maximizing the total average received power of the E-Rs subject to power constraints of the E-AP, which is a non-convex stochastic optimization problem. Using eigenvalue decomposition techniques, we derive a closed-form expression for the optimal policy, which requires the distribution of the channel state information (CSI) in the network. We then propose a near-optimal policy that does not require this knowledge...