Loading...
Search for: edge-dislocations
0.009 seconds

    Studying Edge Dislocations and Wedge Disclinations in Core-Shell Nanowires by Incorporating Surface Effect

    , M.Sc. Thesis Sharif University of Technology Rezazadeh Kalehbasti, Shaghayegh (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    By considering the effect of surface/interface stresses, classical problems of the interaction between dislocations/disclinations and nanowires are addressed. In particular, two distinct problems are solved: the first one consists of an edge dislocation seated inside the shell of a core-shell nanowire and the second one investigates a wedge disclination (dipole) located inside the shell of a core-shell nanowire. The stress field of the nanowire, strain energy per unit length and the image forces acting on the defects are calculated and discussed in detail. Moreover, the results are compared with their classical counterparts. These results show that by considering the effect of... 

    Surface/interface effects on the formation of misfit dislocation in a core-shell nanowire

    , Article Philosophical Magazine ; Volume 94, Issue 5 , 11 February , 2014 , Pages 492-519 ; ISSN: 14786435 Enzevaee, C ; Gutkin, M. Y ; Shodja, H. M ; Sharif University of Technology
    Abstract
    The misfit strain within the core of a two-phase free-standing core-shell nanowire resulting in the generation of an edge misfit dislocation or an edge misfit dislocation dipole at the core-shell interface is considered theoretically within both the classical and surface/interface elasticity approaches. The critical conditions for the misfit dislocation generation are studied and discussed in detail with special attention to the non-classical surface/interface effect. It is shown that this effect is significant for fine cores of radius smaller than roughly 20 interatomic distances. The positive and negative surface/interface Lamé constants mostly make the generation of the misfit dislocation... 

    Surface/interface effects on elastic behavior of an edge dislocation in the shell of a core-shell nanowire

    , Article European Journal of Mechanics, A/Solids ; Volume 41 , September–October , 2013 , Pages 86-100 ; 09977538 (ISSN) Gutkin, M. Yu ; Rezazadeh Kalehbasti, S ; Shodja, H. M ; Sharif University of Technology
    2013
    Abstract
    The elastic behavior of an edge dislocation placed in the shell of a free-standing core-shell nanowire is considered within the theory of surface/interface elasticity. Using the method of complex potential functions the expressions for the stress field of the dislocation, image forces on the dislocation, and the dislocation strain energy are derived and studied in detail. A special attention is paid to non-classical effects revealed within the surface/interface elasticity approach where a characteristic length parameter referred to as surface/interface modulus is introduced. These effects are (i) the stress oscillations along the shell surface and core-shell interface for negative values of... 

    Elastic behavior of an edge dislocation inside the wall of a nanotube

    , Article Scripta Materialia ; Volume 64, Issue 8 , 2011 , Pages 709-712 ; 13596462 (ISSN) Moeini Ardakani, S. S ; Gutkin, M. Y ; Shodja, H. M ; Sharif University of Technology
    Abstract
    The problem of edge dislocation inside the wall of a multi-walled nanotube accounting for the surface effects is addressed. Within the framework of surface elasticity the stress field is obtained, using complex potentials. Furthermore, the stress field and image forces acting on the dislocation, with and without an account of the surface stress, are compared together and discussed  

    A study on the mobility of [formula presented] edge dislocation in low-carbon α-Fe and its interactions with damage cascade: on picosecond time scale using molecular dynamics simulations

    , Article Journal of Nuclear Materials ; Volume 527 , 2019 ; 00223115 (ISSN) Zamzamian, M ; Feghhi, A. H ; Samadfam, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Molecular dynamics simulations were used to propose a closed-form expression for the mobility of the [Formula presented] edge dislocation in low-carbon α-Fe (up to 0.1 at.% C) at temperatures of 300, 400 and 500 K and applied shear stresses of 10–100 MPa. Considering this parameter helps us to understand the effect of damage cascade on the dislocation mobility. The results confirmed that the point defect clusters at the thermal spike stage of the cascade (that they can be considered as an unstable precipitation-like phase), the distance of damage cascade relative to the center of the dislocation core and forming carbon-vacancy (C–V) complexes are some rather stronger obstacles for movement... 

    Surface/Interface Effect on the Interaction of an Embedded Core-Shell Nanowire and Edge Dislocation and Generation of Misfit Dislocations in a Core-Shell Nanowire

    , M.Sc. Thesis Sharif University of Technology Enzevaee, Camelia (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    Within the surface/interface elasticity, two following problem are solved: First the elastic behavior of an edge dislocation located inside the core of a core-shell nanowire which is embedded in an infinite matrix is studied within the surface/interface elasticity theory. The corresponding boundary value problem is solved exactly by using complex potential functions. The stress field of the dislocation, image force acting on the dislocation, and the dislocation strain energy is calculated by considering the interface effect. Second, the surface/interface elasticity approach is applied to the case of a misfit core-shell nanowire system in which the misfit strain is adjusted through the... 

    Augmented RKPM Modeling of a Glide Edge Dislocation Near a Grain Boundary in the Framework of Surface/Interface Elasticity

    , M.Sc. Thesis Sharif University of Technology (Author) ; Mohammadi Shoja, Hossein (Supervisor)
    Abstract
    Traditional continuum theory of elasticity becomes remarkably inaccurate in the vicinity of singularities, and when the size eect is of concern. For example in the study of ultra-small objects and ultra-thin lms, near defects, near point of application of a concentrated load and as such, the classical solutions are not reliable. This work focuses on determination of the elastic elds of an edge dislocation near the grain boundary of two perfectly bonded nano-size crystals. It is proposed to study this problem in the context of surface/interface elasticity, and incorporate the eect of the grain boundary on the elastic elds. In contrast to the surface/interface elasticity theory, traditional... 

    Surface and Interface Effects on the Elastic Fields of an Edge Dislocation Inside a Silicon Nanotube with Thin Siox Coating

    , M.Sc. Thesis Sharif University of Technology Azizi, Pegah (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    The exact analytical elastic fields within a double-walled silicon nano-tube with a thin layer of SiOx coating associated with surface/ interface effects as well as the classical theory of elasticity due to the presence of an edge dislocation with an arbitrary Burger’s vector and position inside of the silicon is determined via complex potential function method. Stress contours within surface elasticity and classical theory are given, and both theory results are compared. Then, the effects of surface Lamé Constants, magnitude and direction of Burger’s vector, shear modulus, nano-tube size, and position of the edge dislocation on the distribution of stress components are illustrated, and the... 

    Interface effects on elastic behavior of an edge dislocation in a core-shell nanowire embedded to an infinite matrix

    , Article International Journal of Solids and Structures ; Volume 50, Issue 7-8 , 2013 , Pages 1177-1186 ; 00207683 (ISSN) Gutkin, M. Y ; Enzevaee, C ; Shodja, H. M ; Sharif University of Technology
    2013
    Abstract
    The elastic behavior of an edge dislocation located inside the core of a core-shell nanowire which is embedded in an infinite matrix is studied within the surface/interface elasticity theory. The corresponding boundary value problem is solved exactly by using complex potential functions. An important parameter so-called interface characteristic parameter which has the dimension of length and is a combination of the interface moduli enters the formulations. The stress field of the dislocation, image force acting on the dislocation, and the dislocation strain energy is calculated by considering the interface effect. The introduced characteristic parameter allows the examination of the... 

    Multi-scale Analysis of Dislocation Emission for Nano-crystalline Structures

    , M.Sc. Thesis Sharif University of Technology Fattahi Faradonbeh, Mehran (Author) ; Khoei, Amir Reza (Supervisor) ; Jahanshahi, Mohsen (Supervisor)
    Abstract
    In this study, a new multi-scale hierarchical technique has been employed to investigate the role of edge dislocation on nano-plates with hex atomic structure in large deformation. Two multiscale hierarchical atomistic/molecular dynamics (MD)–finite element (FE) coupling methods are proposed to illustrate the influence of temperature on mechanical properties of Magnesium in large deformation. The atomic nonlinear elastic parameters are obtained via computing second-order derivative of Representative atom’s energy and RVE’s strain energy density with respect to deformation criterions (deformation gradient and Green strain tensor) to bridge between atomistic and continuum level, the... 

    A Coupling Atomistic-continuum Approach for Modeling Dislocation in Plastic Behavior of Nano-structures

    , M.Sc. Thesis Sharif University of Technology Omrani Pournava, Amir Mohsen (Author) ; Khoei, Amir Reza (Supervisor) ; Jahanshahi, Mohsan (Co-Advisor)
    Abstract
    In this study, a novel multi-scale hierarchical method has been employed to explore the role of edge dislocation on Nano-plates with hexagonal atomic structure in large deformation. multiscale hierarchical atomistic/molecular dynamics (MD) finite element (FE) coupling methods are proposed to demonstrate the impact of dislocation on mechanical properties of Magnesium in large deformation. The atomic nonlinear elastic parameters are attained via computing first-order derivation of stress with respect to strain of Representative Volume Element (RVE). To associate between atomistic and continuum level, the mechanical characteristics are captured in the atomistic scale and transferred to the... 

    Wedge disclinations in the shell of a core-shell nanowire within the surface/interface elasticity

    , Article Mechanics of Materials ; Vol. 68, Issue , 2014 , pp. 45-63 ; ISSN: 01676636 Rezazadeh Kalehbasti, S ; Gutkin, M. Y ; Shodja, H. M ; Sharif University of Technology
    Abstract
    The elastic behaviors of a two-axes dipole of wedge disclinations and an individual wedge disclination located inside the shell of a free standing core-shell nanowire is studied within the surface/interface elasticity theory. The corresponding boundary value problem is solved using complex potential functions, defined through modeling the disclination dipole by two finite walls of infinitesimal edge dislocations. The stress field, disclination strain energies and image forces acting on the disclinations, are calculated and studied in detail. It is shown that the stresses are rather inhomogeneous across the nanowire cross section, change their signs and reach local maxima and minima far from... 

    Size-dependent interaction of an edge dislocation with an elliptical nano-inhomogeneity incorporating interface effects

    , Article International Journal of Solids and Structures ; Volume 49, Issue 5 , March , 2012 , Pages 759-770 ; 00207683 (ISSN) Shodja, H. M ; Ahmadzadeh Bakhshayesh, H ; Gutkin, M. Y
    2012
    Abstract
    The elastic behavior of an edge dislocation, which is positioned outside of a nanoscale elliptical inhomogeneity, is studied within the interface elasticity approach incorporating the elastic moduli and surface tension of the interface. The complex potential function method is used. The dislocation stress field and the image force acting on the dislocation are found and analyzed in detail. The difference between the solutions obtained within the classical-elasticity and interface-elasticity approaches is discussed. It is shown that for the stress field, this difference can be significant in those points of the inhomogeneity-matrix interface, where the radius of curvature is smaller and which... 

    A new microstructural model based on dislocation generation and consumption mechanisms through severe plastic deformation

    , Article Computational Materials Science ; Volume 50, Issue 3 , January , 2011 , Pages 1123-1135 ; 09270256 (ISSN) Hosseini, E ; Kazeminezhad, M ; Sharif University of Technology
    2011
    Abstract
    A new model on the evolution of dislocation structure of cell forming metals and alloys through severe plastic deformation is presented. Following previous approaches, the model considers a cellular dislocation structure consisted of two phases: cell interiors and cell walls. The model distinguishes edge and screw dislocations in terms of three categories: mobile dislocations, immobile dislocations in cell interiors and immobile dislocations in cell walls. Then considering physical and geometrical assumptions for each dislocation category, an evolutional law is derived, based on some dislocation interaction mechanisms such as dislocation generation, annihilation, locking and migration. The... 

    A hierarchical thermo-mechanical multi-scale technique for modeling of edge dislocations in nano-crystalline structures

    , Article Computational Materials Science ; Volume 141 , 2018 , Pages 360-374 ; 09270256 (ISSN) Jahanshahi, M ; Khoei, A. R ; Heidarzadeh, N ; Jafarian, N ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this paper, a hierarchical multi-scale technique is developed to investigate the thermo-mechanical behavior of nano-crystalline structures in the presence of edge dislocations. The primary edge dislocations are generated by proper adjustment of atomic positions to resemble discrete dislocations. The interatomic potential used to perform atomistic simulation is based on the Finnis-Sinclair embedded-atom method as many-body potential and, the Nose-Hoover thermostat is employed to control the effect of temperature. The strain energy density function is obtained for various representative volume elements under biaxial and shear loadings by fitting a fourth order polynomial in the atomistic... 

    Nonlocal hcp kernel functions based on ab initio calculations: Pertinent dislocation problems revisited

    , Article Mechanics of Materials ; Volume 160 , 2021 ; 01676636 (ISSN) Shahvaghar Asl, S ; Shodja, H. M ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Eringen's nonlocal theory and an accurate determination of the nonlocal kernel functions for hexagonal close-packed (hcp) crystals are of interest. The kernel functions are closely related to the anisotropy as well as any crystalline symmetries. To this end, five new distinct nonlocal kernel functions which have the characteristics of discrete atomistic Green's functions in the stress space are obtained through consideration of the nonlocal dispersion relations associated with certain directions combined with ab initio Density Functional Perturbation Theory (DFPT) calculations of the pertinent phonon frequencies. This is the first work which provides the nonlocal hcp kernel functions... 

    Nonlocal Kernel Functions for fcc and hcp Crystals with Application to Dislocation Problems

    , Ph.D. Dissertation Sharif University of Technology Shahvaghar Asl, Silda (Author) ; Mohammadi Shodja, Hossein (Supervisor)
    Abstract
    For half a century, the problem of extracting the components of the nonlocal moduli tensor of anisotropic materials has been remained unsolved. In the present work, for the first time, the solution of this problem is proposed and the components of nonlocal moduli tensor are obtained for close-packed crystals, i.e. face center cubic or hexagonal closed packed. To this end, new distinct nonlocal kernel functions which have the characteristics of discrete atomistic Green’s functions in the stress space are obtained through consideration of the nonlocal dispersion relations. Each of dispersion relations are associated with certain directions and are combined with ab initio Density Functional...