Loading...
Search for: dual-porosity-model
0.006 seconds

    Study and Development of Dual Porosity/Permeability Models for Simulation of Forced Gravity Drainage Mechanism in Fractured Porous Media

    , M.Sc. Thesis Sharif University of Technology Samimi Ardestani, Ehsan (Author) ; Massihi, Mohsen (Supervisor) ; Gerami, Shahab (Supervisor) ; Ganjeh Ghazvini, Mostafa (Co-Advisor)
    Abstract
    The available investigations show that gravity drainage mechanism in fractured reservoir make a high recovery factor in comparison with other mechanisms. In recent years, the forced gravity drainage assisted by gas injection is also introduced; despite of its importance there is no comprehensive modeling study in the literature. The fractured reservoir is simulated frequently by dual porosity models in which the transfer function is the key issue for this method of simulation. This study makes an effort by comparison of different transfer functions with fine grid simulation results of a single block model, in order to evaluate their ability for simulation of forced gravity drainage... 

    Fracture Reservoir Simulation Using Finite Element Method with Logarithmic Shape Functions

    , M.Sc. Thesis Sharif University of Technology Qaseminejad Raeini, Ali (Author) ; Massihi, Mohsen (Supervisor) ; Shojaei, Akbar (Supervisor)
    Abstract
    Oil reservoir simulation serves an important role in forecasting oil production. This forecast, in turn, helps to devise a production scheme for hydrocarbon reservoirs which is one of main objectives of reservoir management team. In this research, using the idea of logarithmic distribution of reservoir fluid pressure around a wellbore, a new method for simulation of naturally fractured reservoir is developed. This method is shown to be more fast and accurate than conventional methods in reservoir simulation. In this method Dual-Porosity formulation is used for description of fluid flow in fractured reservoirs. The governing equations then were discretized by Galerkin Finite element method in... 

    Modification of vogel's inflow performance relationship (IPR) for dual porosity model

    , Article Petroleum Science and Technology ; Volume 31, Issue 16 , 2013 , Pages 1633-1646 ; 10916466 (ISSN) Eghbali, S ; Gerami, S ; Sharif University of Technology
    2013
    Abstract
    The performance of a solution gas-drive reservoir can be predicted using Vogel inflow performance relation (or IPR), which simply relates the deliverability of a well to bottom-hole pressure and average reservoir pressure. While many studies have shown the success of Vogel-type IPR for single porosity reservoirs, the applicability of this method for naturally fractured reservoirs (NFRs), is under question mainly because of the complex flow behavior in matrix and fracture systems. The present study is undertaken to determine if the relation between NFR flowing wellbore pressure and oil production rate could be described by Vogel's IPR. For this purpose, a synthetic dual porosity fractured... 

    An improvement of the matrix-fracture transfer function in free fall gravity drainage

    , Article Petroleum Science and Technology ; Vol. 31, issue. 24 , Apr , 2011 , Pages. 2612-2620 ; 10916466 (ISSN) Samimi, S. E ; Masihi, M ; Sharif University of Technology
    Abstract
    The simulation of fractured reservoir is conventionally performed by using dual porosity formulation in which the type of transfer function may be critical. Over the past few years, various models with their strength and weakness have been developed to account for matrix-fracture interporosity flow. However, some of them are unable to simulate some mechanisms like gravity drainage. In this work, the most well-known transfer functions have been examined for simulation of the gravity drainage in a single block model and an improvement has been introduced to modify them. The validation of the developed approach have been done by using fine grid simulation  

    History Matching and Performance Prediction of Naturally Fractured Petroleum Reservoir Based on the Recovery Curve Method

    , Ph.D. Dissertation Sharif University of Technology Ghaedi, Mojtaba (Author) ; Massihi, Mohsen (Supervisor) ; Ghazanfari, Mohammad Hossein (Supervisor) ; Heinemann, Zoltan (Co-Advisor)
    Abstract
    The discrete fracture network and continuous fracture network are among the most widely used methods to model naturally fractured reservoirs. Each method faces particular limitations. The recently introduced recovery curve method (RCM) is believed to meet the limitations of the common methods. In the RCM the recovery curves are used to more realistically describe matrix-fracture interactions. It is necessary to present appropriate solutions to apply the RCM in the real fileds and also to evaluate it based on the historical production data. In this work at first, the basics of the RCM are presented then with a simple column model this method is validated. Then in a column model and a field... 

    Assisted History-Matching for Fractured Reservoir Characterization

    , M.Sc. Thesis Sharif University of Technology Rezaei Kalat, Alireza (Author) ; Ayatollahi, Shahab (Supervisor) ; Masihi, Mohsen (Supervisor)
    Abstract
    Fracture reservoirs are highly heterogeneous. This heterogeneity makes the process of adjusting model parameters to match both the static geological and dynamic production data challenging. For this reason, the characterization of the fracture network of these reservoirs, which is achieved by finding the appropriate probability distributions of the fracture properties in the discrete fracture network model, requires the use of an integrated workflow for the process of history-matching.This thesis, presents an integrated workflow for the process of history-matching of naturally fractured reservoirs with field-scale performance capability. In this methodology, first, multiple discrete fracture... 

    1D Simulation of Naturally Fractured Oil Reservoir Flow with High Resolution Central Scheme Using Black-Oil Model

    , M.Sc. Thesis Sharif University of Technology Mojaddam, Mohammad (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor)
    Abstract
    In This work, the performance of a finite volume (FV) numerical method is examined for simulating naturally fractured hydrocarbon reservoir. The dual-porosity approach applied for fracture modeling, and the flow transfer formulated based on a generalized black oil model which is based on matrix formulation, leading to a system of equations prone to degeneracy. This FV high-resolution central scheme numerical method is not sensitive to the choice of CFL number like some of other central schemes and can conveniently handle degenerate equations appearing in the reservoir simulation governing equation. In this effort, one dimension multi phase flow simulated in naturally fractured reservoir and... 

    A bridge between dual porosity and multiscale models of heterogeneous deformable porous media

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; 2018 ; 03639061 (ISSN) Hajiabadi, M. R ; Khoei, A. R ; Sharif University of Technology
    John Wiley and Sons Ltd  2018
    Abstract
    In this paper, a multiscale homogenization approach is developed for fully coupled saturated porous media to represent the idealized sugar cube model, which is generally employed in fractured porous media on the basis of dual porosity models. In this manner, an extended version of the Hill-Mandel theory that incorporates the microdynamic effects into the multiscale analysis is presented, and the concept of the deformable dual porosity model is demonstrated. Numerical simulations are performed employing the multiscale analysis and dual porosity model, and the results are compared with the direct numerical simulation through 2 numerical examples. Finally, a combined multiscale-dual porosity... 

    An improvement on modeling of forced gravity drainage in dual porosity simulations using a new matrix-fracture transfer function

    , Article Transport in Porous Media ; Volume 94, Issue 1 , 2012 , Pages 207-223 ; 01693913 (ISSN) Samimi, S. E ; Masihi, M ; Gerami, S ; Ghazvini, M. G ; Sharif University of Technology
    Abstract
    In fractured oil reservoirs, the gravity drainage mechanism has great potentials to higher oil recovery in comparison with other mechanisms. Recently, the forced gravity drainage assisted by gas injection has also been considered; however, there are few comprehensive studies in the literature. Dual porosity model, the most common approach for simulation of fractured reservoirs, uses transfer function concept to represent the fluid exchange between matrix and its neighborhood fractures. This study compares the results of different available transfer functions with those of fine grid simulations when forced gravity drainage contributes to oil production from a single matrix block. These... 

    A bridge between dual porosity and multiscale models of heterogeneous deformable porous media

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 43, Issue 1 , 2019 , Pages 212-238 ; 03639061 (ISSN) Hajiabadi, M. R ; Khoei, A. R ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    In this paper, a multiscale homogenization approach is developed for fully coupled saturated porous media to represent the idealized sugar cube model, which is generally employed in fractured porous media on the basis of dual porosity models. In this manner, an extended version of the Hill-Mandel theory that incorporates the microdynamic effects into the multiscale analysis is presented, and the concept of the deformable dual porosity model is demonstrated. Numerical simulations are performed employing the multiscale analysis and dual porosity model, and the results are compared with the direct numerical simulation through 2 numerical examples. Finally, a combined multiscale-dual porosity... 

    A bridge between dual porosity and multiscale models of heterogeneous deformable porous media

    , Article International Journal for Numerical and Analytical Methods in Geomechanics ; Volume 43, Issue 1 , 2019 , Pages 212-238 ; 03639061 (ISSN) Hajiabadi, M. R ; Khoei, A. R ; Sharif University of Technology
    John Wiley and Sons Ltd  2019
    Abstract
    In this paper, a multiscale homogenization approach is developed for fully coupled saturated porous media to represent the idealized sugar cube model, which is generally employed in fractured porous media on the basis of dual porosity models. In this manner, an extended version of the Hill-Mandel theory that incorporates the microdynamic effects into the multiscale analysis is presented, and the concept of the deformable dual porosity model is demonstrated. Numerical simulations are performed employing the multiscale analysis and dual porosity model, and the results are compared with the direct numerical simulation through 2 numerical examples. Finally, a combined multiscale-dual porosity... 

    Conceptualization of karstic aquifer with multiple outlets using a dual porosity model

    , Article Groundwater ; Volume 55, Issue 4 , 2017 , Pages 558-564 ; 0017467X (ISSN) Hosseini, S. M ; Ataie Ashtiani, B ; Sharif University of Technology
    Abstract
    In this study, two conceptual models, the classic reservoir (CR) model and exchange reservoirs model embedded by dual porosity approach (DPR) are developed for simulation of karst aquifer functioning drained by multiple outlets. The performances of two developed models are demonstrated at a less developed karstic aquifer with three spring outlets located in Zagros Mountain in the south-west of Iran using 22-years of daily data. During the surface recharge, a production function based on water mass balance is implemented for computing the time series of surface recharge to the karst formations. The efficiency of both models has been assessed for simulation of daily spring discharge during the...