Loading...
Search for: domain-walls
0.009 seconds

    Thick planar domain wall: Its thin wall limit and dynamics

    , Article International Journal of Modern Physics D ; Volume 16, Issue 4 , 2007 , Pages 629-640 ; 02182718 (ISSN) Ghassemi, S ; Khakshournia, S ; Mansouri, R ; Sharif University of Technology
    2007
    Abstract
    We consider a planar gravitating thick domain wall of the λφ4 theory as a space-time with finite thickness glued to two vacuum space-times on each side of it. Darmois junction conditions written on the boundaries of the thick wall with the embedding space-times reproduce the Israel junction condition across the wall in the limit of infinitesimal thickness. The thick planar domain wall located at a fixed position is then transformed to a new coordinate system in which its dynamics can be formulated. It is shown that the wall's core expands as if it were a thin wall. The thickness in the new coordinates is not constant anymore and its time dependence is given. © World Scientific Publishing... 

    Inflationary power asymmetry from primordial domain walls

    , Article Journal of Cosmology and Astroparticle Physics ; Vol. 2014, issue. 11 , 2014 ; ISSN: 14757516 Jazayeri, S ; Akrami, Y ; Firouzjahi, H ; Solomon, A. R ; Wang, Y ; Sharif University of Technology
    Abstract
    We study the asymmetric primordial fluctuations in a model of inflation in which translational invariance is broken by a domain wall. We calculate the corrections to the power spectrum of curvature perturbations; they are anisotropic and contain dipole, quadrupole, and higher multipoles with non-trivial scale-dependent amplitudes. Inspired by observations of these multipole asymmetries in terms of two-point correlations and variance in real space, we demonstrate that this model can explain the observed anomalous power asymmetry of the cosmic microwave background (CMB) sky, including its characteristic feature that the dipole dominates over higher multipoles. We test the viability of the... 

    Magnetoresistance due to domain wall bulging

    , Article Journal of Magnetism and Magnetic Materials ; Volume 322, Issue 16 , August , 2010 , Pages 2401-2404 ; 03048853 (ISSN) Fathi, M. B ; Phirouznia, A ; Sharif University of Technology
    2010
    Abstract
    The effect of bulging of domain wall (DW) on the magnetoresistance (MR) is investigated. With taking into account the auto-correlation between the points of the interface, one can formulate the mobility within the relaxation time approximation scheme. The results show that the bulging of DW, evaluated with the commonly accepted magnetic parameters for typical ferromagnetic materials of Co, Fe and Ni, has a countable role into the MR  

    Conformal curves on the WO3 surface

    , Article Physical Review Letters ; Volume 100, Issue 4 , 2008 ; 00319007 (ISSN) Saberi, A. A ; Rajabpour, M. A ; Rouhani, S ; Sharif University of Technology
    2008
    Abstract
    We have studied the isoheight lines on the WO3 surface as a physical candidate for conformally invariant curves. We have shown that these lines are conformally invariant with the same statistics of domain walls in the critical Ising model. They belong to the family of conformal invariant curves called Schramm-Loewner evolution (or SLEκ), with diffusivity of κ∼3. This can be regarded as the first experimental observation of SLE curves. We have also argued that Ballistic Deposition (BD) can serve as a growth model giving rise to contours with similar statistics at large scales. © 2008 The American Physical Society  

    Casimir effect in domain wall formation

    , Article International Journal of Modern Physics A ; Volume 18, Issue 23 , 2003 , Pages 4285-4293 ; 0217751X (ISSN) Setare, M. R ; Sharif University of Technology
    2003
    Abstract
    The Casimir forces on two parallel plates in conformally flat de Sitter background due to conformally coupled massless scalar field satisfying mixed boundary conditions on the plates is investigated. In the general case of mixed boundary conditions formulae are derived for the vacuum expectation values of the energy-momentum tensor and vacuum forces acting on boundaries. Different cosmological constants are assumed for the space between and outside of the plates to have general results applicable to the case of domain wall formations in the early universe  

    Experimental investigation of slip velocity and settling distribution of micro-particles in converging–diverging microchannel

    , Article Microsystem Technologies ; 2016 , Pages 1-10 ; 09467076 (ISSN) Shirinzadeh, F ; Saidi, M. H ; Davari, A ; Sharif University of Technology
    Springer Verlag  2016
    Abstract
    An experimental test bed based on single particle tracking techniques is employed in order to investigate the velocity domain, slip velocity, and settling distribution of micro-particles in low-Reynolds number poiseuille flow in converging–diverging microchannel. Three-dimensional velocity domain of particles are studied in the presence of walls and compared with the particle-free fluid. The results show that the velocity of particles moving near the side walls of microchannel decreases about 30 % compared to those moving at the centerline. Furthermore, the effects of converging–diverging geometry on sedimentation of micro-particles are considered. The results show an average decrease of... 

    Experimental investigation of slip velocity and settling distribution of micro-particles in converging–diverging microchannel

    , Article Microsystem Technologies ; Volume 23, Issue 8 , 2017 , Pages 3361-3370 ; 09467076 (ISSN) Shirinzadeh, F ; Saidi, M. H ; Davari, A ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    An experimental test bed based on single particle tracking techniques is employed in order to investigate the velocity domain, slip velocity, and settling distribution of micro-particles in low-Reynolds number poiseuille flow in converging–diverging microchannel. Three-dimensional velocity domain of particles are studied in the presence of walls and compared with the particle-free fluid. The results show that the velocity of particles moving near the side walls of microchannel decreases about 30 % compared to those moving at the centerline. Furthermore, the effects of converging–diverging geometry on sedimentation of micro-particles are considered. The results show an average decrease of... 

    High gradient temperature thermo-buoyant flow in a square cavity with magnetoconvection using a novel non-boussinesq algorithm

    , Article Numerical Heat Transfer; Part A: Applications ; Volume 64, Issue 3 , 2013 , Pages 255-272 ; 10407782 (ISSN) Hosseinizadeh, S. F ; Hajibagheri, M ; Heidarnataj, M ; Darbandi, M ; Javaherdeh, K ; Sharif University of Technology
    2013
    Abstract
    We study numerically the heat transfer of steady laminar flow in a square cavity filled with electrically conducting fluids, in the presence of an external uniform magnetic field. Imposing a large temperature gradient between two opposite vertical walls, there are substantial temperature and density variations in the domain. The fluid is treated as an ideal gas. Indeed, high temperature gradient thermo-buoyant cavity flows result in natural convection flow domains with high Rayleigh number. To implement the temperature variation effect, the fluid properties, including the conductivity and viscosity coefficients, are considered to vary with temperature in accordance to the Sutherland's law.... 

    Water propagation in two-dimensional petroleum reservoirs

    , Article Physica A: Statistical Mechanics and its Applications ; Volume 445 , 2016 , Pages 102-111 ; 03784371 (ISSN) Najafi, M. N ; Ghaedi, M ; Moghimi Araghi, S ; Sharif University of Technology
    Elsevier 
    Abstract
    In the present paper we investigate the problem of water propagation in 2 dimensional (2D) petroleum reservoir in which each site has the probability p of being occupied. We first analyze this propagation pattern described by Darcy equations by focusing on its geometrical features. We find that the domain-walls of this model at p=pc ≃ 0.59 are Schramm-Loewner evolution (SLE) curves with κ=3.05 ∓ 0.1 consistent with the Ising universality class. We also numerically show that the fractal dimension of these domain-walls at p=pc is Df ≃ 1.38 consistent with SLEκ=3. Along with this analysis, we introduce a self-organized critical (SOC) model in which the water movement is modeled by a chain of... 

    Simulation of flow of short fiber suspensions through a planar contraction

    , Article Scientia Iranica ; Volume 19, Issue 3 , June , 2012 , Pages 579-584 ; 10263098 (ISSN) Khodadadi Yazdi, M ; Ramazani S. A. A ; Kamyabi, A ; Hosseini Amoli, H ; Sharif University of Technology
    2012
    Abstract
    In this study, the flow of a fiber filled viscoelastic matrix through planar contractions is investigated. It was found that by adding fiber to the matrix vortex, the intensity increases. Fiber orientation along "x" and "y" axes was studied too. It was found that fiber orientation could be used for determining the flow regime through the contraction geometry. The rigidity condition of fibers, which needs the trace of the orientation tensor to be unity everywhere in the domain, is correct except near walls and the reentrant corner, which is slightly less than one. In these regions, the stress magnitude is higher, which results in more numerical errors, and which further leads to some error in... 

    Numerical study of high gradient thermobuoyant flow in a tilted cavity using a novel non-boussinesq algorithm

    , Article Numerical Heat Transfer; Part A: Applications ; Volume 58, Issue 12 , 2010 , Pages 984-1003 ; 10407782 (ISSN) Hosseinizadeh, S. F ; Darbandi, M ; Heidarnataj, M ; Sharif University of Technology
    2010
    Abstract
    We study the natural convection heat transfer in a tilted square cavity with different tilt angles. The cavity is subject to a high gradient temperature resulting in high Rayleigh number flows. The fluid is air and is treated as an ideal gas. The flow is laminar. The fluid properties change with temperature variation using Sutherland's law. Because of imposing large temperature gradients to the two cavity opposite walls, there is substantial density variation in the domain. We use a novel non-Boussinesq algorithm to model the density variation fully. Therefore, the current results are considerably different from those obtained using the classical Boussinesq-based methods, which replace the...