Loading...
Search for: diffusion-and-adsorption
0.008 seconds

    Bacteria cell hydrophobicity and interfacial properties relationships: A new MEOR approach

    , Article Colloids and Interfaces ; Volume 5, Issue 4 , 2021 ; 25045377 (ISSN) Ganji Azad, E ; Javadi, A ; Jahanbani Veshareh, M ; Ayatollahi, S ; Miller, R ; Sharif University of Technology
    MDPI  2021
    Abstract
    For microbial enhanced oil recovery (MEOR), different mechanisms have been introduced. In some of these papers, the phenomena and mechanisms related to biosurfactants produced by certain microorganisms were discussed, while others studied the direct impacts of the properties of microorganisms on the related mechanisms. However, there are only very few papers dealing with the direct impacts of microorganisms on interfacial properties. In the present work, the interfacial properties of three bacteria MJ02 (Bacillus Subtilis type), MJ03 (Pseudomonas Aeruginosa type), and RAG1 (Acinetobacter Calcoaceticus type) with the hydrophobicity factors 2, 34, and 79% were studied, along with their direct... 

    Molecular dynamics simulation investigation of hexanoic acid adsorption onto calcite (1014)surface

    , Article Fluid Phase Equilibria ; Volume 387 , 2015 , Pages 24-31 ; 03783812 (ISSN) Ghatee, M. H ; Koleini, M. M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    In this paper we report the results of classical molecular dynamics (MD) simulation of hexanoic acid adsorption on calcite (101-4) surface plane using Pavese and AMBER force fields for calcite and hexanoic acid, respectively. Pair correlation function, strictly suggests a well-structured adsorption. Density profile indicates the adsorption occurs through double-bonded O atom of the acid head group by direct interaction with Ca atom at calcite surface. Adsorption orientation of H and double-bonded O atoms was found to be as lock and key with respect to calcite surface Ca and O atoms, facilitating an effective adsorption. Adsorption time evolution indicates that O atom adsorption is...