Loading...
Search for: deposition-potential
0.011 seconds

    The Pt/Ni modified TiO 2 nanotubes and its catalytic activity toward glucose

    , Article ECS Transactions, 1 May 2011 through 6 May 2011 ; Volume 35, Issue 35 , May , 2011 , Pages 63-69 ; 19385862 (ISSN) ; 9781607682950 (ISBN) Mahshid, S. S ; Mahshid, S ; Ghahremaninezhad, A ; Dolati, A ; Ghorbani, M ; Luo, S ; Yang, L ; Cai, Q ; Sharif University of Technology
    2011
    Abstract
    The catalytic activity of Pt/Ni/TiO 2 nanotubes electrode toward glucose has been studied. Fabrication of Pt/Ni nanostructures was done in a single-bath solution through electrochemical pulse method by changing the deposition potential between -0.3 and -4 V vs. SCE, respectively. The resulting modified electrode represented high conductivity due to the effective presence of metallic components and uniform surface area caused by dispersion of Pt and Ni nanostructures. The scanning electron microscopy images also confirmed that a large amount of metals colonies were well-dispersed at the edge of the TiO 2 nanotubes. In addition, the Pt/Ni TiO 2 nanotubes modified electrode exhibited an... 

    Experimental investigation of inorganic scale deposition during smart water injection - A formation damage point of view

    , Article IOR NORWAY 2017 - 19th European Symposium on Improved Oil Recovery: Sustainable IOR in a Low Oil Price World, 24 April 2017 through 27 April 2017 ; 2017 ; 9789462822092 (ISBN) Ghasemian, J ; Mokhtari, R ; Ayatollahi, S ; Riahi, S ; Malekzade, E ; Sharif University of Technology
    Abstract
    Smart water injection is determined as an effective EOR process to change the wettability and interfacial tension for better micro/macro sweep efficiencies. This water contains reactive ions such as Mg ∧(2+), Ca ∧(2+) and SO-4 ∧(2-) which can act as potential determining ions and change the surface charge of calcite rocks. One of the major concerns in the execution of an effective waterflood, especially in tight carbonate reservoirs, is the incompatibility between the formation brine and the injecting water. This research work aims to investigate the most important challenge of waterflooding process related to the possible formation damage because of inorganic scale deposition during... 

    A comparative study of sequentially layer-deposited and co-deposited Co-Mn oxides as potential redox capacitors

    , Article Journal of Solid State Electrochemistry ; Volume 16, Issue 4 , April , 2012 , Pages 1561-1569 ; 14328488 (ISSN) Gobal, F ; Jafarzadeh, S ; Sharif University of Technology
    2012
    Abstract
    Layers of cobalt and manganese oxides were co-deposited or deposited on top of each other or next to each other by potentiostatic method onto stainless steel substrate. Deposition potentials of 1 and -1 V for the anodic and cathodic depositions were employed. Specific capacitance values in the range of 38.5-78 F g -1 were found with cobalt oxide on top of manganese oxide having the lowest and manganese oxide on top of cobalt oxide having the highest capacitances. The usefulness of the electrodes was characterized by cyclic voltammetry, charge-discharge cycling, and electrochemical impedance spectroscopy in 2 M NaOH electrolyte for redox supercapacitor applications. The latter presented the... 

    Ni-P/Zn-Ni compositionally modulated multilayer coatings – part 1: electrodeposition and growth mechanism, composition, morphology, roughness and structure

    , Article Applied Surface Science ; Volume 442 , 2018 , Pages 275-287 ; 01694332 (ISSN) Bahadormanesh, B ; Ghorbani, M ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    The Ni-P/Zn-Ni compositionally modulated multilayer coatings CMMCs were electrodeposited from a single bath by switching the cathodic current density. The composition, surface morphology, roughness, layers growth pattern as well as the phase structure of deposits were extensively studied via SEM, EDS, AFM and XRD analysis. Effects of bath ingredients on the electrodeposition behavior were analyzed through cathodic linear sweep voltammetry. Although the concentration of Zn2+ in bath was 13 times higher than Ni2+, the Zn-Ni deposition potential was much nearer to Ni deposition potential rather than that of Zn. Addition of NaH2PO2 to the Ni deposition bath considerably raised the current... 

    Effect of salinity and ion type on formation damage due to inorganic scale deposition and introducing optimum salinity

    , Article Journal of Petroleum Science and Engineering ; Volume 177 , 2019 , Pages 270-281 ; 09204105 (ISSN) Ghasemian, J ; Riahi, S ; Ayatollahi, S ; Mokhtari, R ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Smart water injection is recognized as an effective EOR process to alter the wettability and interfacial tension to obtain higher micro/macro sweep efficiencies. This water contains reactive ions such asMg2+, Ca2+ andSO42- which can act as potential-determining ions and change the surface charge of calcite rocks. One of the major concerns in the execution of an effective water-flood process, especially in tight carbonate reservoirs, is the chemical incompatibility between the formation brine and the injecting water. In the present study, laboratory fluid compatibility tests were carried out and software simulation was done to investigate the most important challenges of the water-flooding... 

    Aniline-silica nanocomposite as a novel solid phase microextraction fiber coating

    , Article Journal of Chromatography A ; Volume 1238 , May , 2012 , Pages 22-29 ; 00219673 (ISSN) Bagheri, H ; Roostaie, A ; Sharif University of Technology
    2012
    Abstract
    A new unbreakable solid phase microextraction (SPME) fiber coating based on aniline-silica nanocomposite was electrodeposited on a stainless steel wire. The electropolymerization process was carried out at a constant deposition potential, applied to the corresponding aqueous electrolyte containing aniline and silica nanoparticles. The scanning electron microscopy (SEM) images showed the non-smooth and the porous surface structure of the prepared nanocomposite. The applicability of the new fiber coating was examined by headspace-solid phase microextraction (HS-SPME) of some environmentally important polycyclic aromatic hydrocarbons (PAHs), as model compounds, from aqueous samples.... 

    An interior needle electropolymerized pyrrole-based coating for headspace solid-phase dynamic extraction

    , Article Analytica Chimica Acta ; Volume 634, Issue 2 , 2009 , Pages 209-214 ; 00032670 (ISSN) Bagheri, H ; Babanezhad, E ; Khalilian, F ; Sharif University of Technology
    2009
    Abstract
    A headspace solid-phase dynamic extraction (HS-SPDE) technique was developed by the use of polypyrrole (PPy) sorbent, electropolymerized inside the surface of a needle, as a possible alternative to solid-phase microextraction (SPME). Thermal desorption was subsequently, employed to transfer the extracted analytes into the injection port of a gas chromatography-mass spectrometry (GC-MS). The PPy sorbent including polypyrrole-dodecyl sulfate (PPy-DS) was deposited on the interior surface of a stainless steel needle from the corresponding aqueous electrolyte by applying a constant deposition potential. The homogeneity and the porous surface structure of the coating were examined using the...