Loading...
Search for: deposition-kinetics
0.005 seconds

    A kinetic study on the electrodeposition of cadmium with the presence of organic agents in sulfate solutions

    , Article Materials Chemistry and Physics ; Volume 94, Issue 1 , 2005 , Pages 23-28 ; 02540584 (ISSN) Dolati, A ; Afshar, A ; Ghasemi, H ; Sharif University of Technology
    2005
    Abstract
    The electrodeposition of cadmium is studied by electrochemical techniques with the presence of the organic agents. The cyclic voltammetry results clearly show that the electrodeposition of cadmium is a diffusion-controlled process associated with a typical nucleation process. With addition of the thiourea, 3-Picolin and benzyl alcohol organic agents simultaneously in sulfate solution, the redox potential of cadmium is shifted to more negative potentials. In this case, the current transients reveal an instantaneous nucleation with a typical three-dimensional (3D) growth mechanism, while it shows progressive nucleation mechanism without the ternary-species organic agents. In addition, the... 

    Electrophoretic deposition of functionally-graded NiO-YSZ composite films

    , Article Journal of the European Ceramic Society ; Volume 33, Issue 10 , 2013 , Pages 1815-1823 ; 09552219 (ISSN) Zarabian, M ; Yar, A. Y ; Vafaeenezhad, S ; Sani, M. A. F ; Simchi, A ; Sharif University of Technology
    2013
    Abstract
    Functionally-graded NiO-8. mol % YSZ composite films were prepared by a controlled voltage-decay electophoretic deposition (EPD) process. The films consisted of three layers with varying NiO concentrations and porosities. Effects of different parameters including the type of the organic media, solid concentration, NiO:YSZ ratio, and iodine on the stability of EPD suspensions and deposition kinetics were studied. A stable NiO-YSZ suspension was attained in isopropanol with NiO-YSZ ratio of 60:40 and iodine concentration of 0.5. mM. The composite film contained varying NiO concentration from 46. wt.% near the substrate to 32. wt.% close to the electrolyte with 42. wt% NiO in the intermediate... 

    Electrophoretic deposition of chitosan

    , Article Materials Letters ; Volume 63, Issue 26 , 2009 , Pages 2253-2256 ; 0167577X (ISSN) Simchi, A ; Pishbin, F ; Boccaccini, A. R ; Sharif University of Technology
    2009
    Abstract
    The electrophoretic deposition (EPD) of chitosan on metallic substrates was investigated. The electrophoretic mobility of the natural biopolymer in aqueous solution as a function of pH was studied. Because the protonation/deporotonation of chitosan is pH-dependent, the electrophoretic mobility and deposition rate is shown to increase with increasing pH from 2.9 to 4.1. The film growth rate is estimated to vary in the range 0.02-0.08 μm/s depending on the pH value. At high growth rates (> 0.05 μm/s), a porous film is obtained due to hydrogen entrapment. The EPD method developed here is applicable for the surface modification of metal implants by chitosan to develop novel bioactive coatings. ©... 

    Concurrent electrophoretic deposition of enzyme-laden chitosan/graphene oxide composite films for biosensing

    , Article Materials Letters ; Volume 308 , 2022 ; 0167577X (ISSN) Moharramzadeh, F ; Zarghami, V ; Mazaheri, M ; Simchi, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    We present a procedure for simultaneous deposition of enzyme-laden chitosan/reduced graphene oxide (rGO) film by electrophoretic deposition (EPD) for fast and efficient detection of glucose. The role of rGO nanosheets is studied on the EPD kinetics of the enzyme-laden suspensions. Investigating the performance of the biosensor by electrochemical techniques indicates its high sensitivity (9700 μA.mM−1.cm−2), low limit of detection (4 µM), and suitable selectivity. © 2021 Elsevier B.V  

    Fluorine treatment of TiO2 for enhancing quantum dot sensitized solar cell performance

    , Article Journal of Physical Chemistry C ; Volume 115, Issue 29 , June , 2011 , Pages 14400-14407 ; 19327447 (ISSN) Samadpour, M ; Boix, P. P ; Giménez, S ; Iraji Zad, A ; Taghavinia, N ; Mora Seró, I ; Bisquert, J ; Sharif University of Technology
    2011
    Abstract
    Surface treatments of TiO2 nanostructure in semiconductor quantum dot sensitized solar cells (QDSCs) aimed to increase the photovoltaic conversion efficiencies of the solar cells are analyzed. A fluorine treatment, with NH4F or HF, on the TiO2 electrodes leads to a general increase of QDSCs performance in a range of QDSCs using different light absorbing materials: CdS, CdSe, and PbS/CdS. In contrast, no significant effect on QDSC performance has been observed after a TiCl4 treatment conventionally used for high performance dye sensitized solar cells (DSCs). Surface and photoelectrochemical characterization of treated electrodes and full solar cells was carried out by means of X-ray... 

    Fabrication of aluminum nitride coatings by electrophoretic deposition: Effect of particle size on deposition and drying behavior

    , Article Ceramics International ; Volume 37, Issue 1 , 2011 , Pages 313-319 ; 02728842 (ISSN) Abdoli, H ; Zarabian, M ; Alizadeh, P ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    Electrophoretic technique was used to deposit micro- and nano-sized aluminum nitride coatings on stainless steel surfaces by using a well-dispersed stable suspension produced by addition of AlN powder plus a small amount of iodine to ethanol. Parabolic regime governed the deposition. Electrophoretic deposition for 240 s at 100 V resulted in formation of a uniformly dense film on the top, but a porous inhomogeneous layer at the bottom. This was attributed to fast deposition of coarse particles and/or agglomerates at large electric fields. After drying, micro-sized particles led to a uniform crack-free interface while nano-particles resulted in fragmented non-cohesive layers. Weight loss...