Loading...
Search for: covalent-immobilization
0.009 seconds

    Nanoparticle supported, magnetically separable manganese porphyrin as an efficient retrievable nanocatalyst in hydrocarbon oxidation reactions

    , Article RSC Advances ; Volume 6, Issue 47 , 2016 , Pages 41551-41560 ; 20462069 (ISSN) Bagherzadeh, M ; Mortazavi Manesh, A ; Sharif University of Technology
    Royal Society of Chemistry 
    Abstract
    A manganese porphyrin, meso-tetrakis(pentafluorophenyl)porphyrinato manganese(iii) acetate, Mn(TPFPP)OAc, was immobilized on silica-coated magnetic Fe3O4 nanoparticles functionalized with 3-aminopropyltriethoxysilane (APTS) through the amino propyl linkage using a grafting process in toluene solvent. This enabled the covalent immobilization of Mn(iii) porphyrin via an aromatic nucleophilic substitution reaction, to afford the Fe3O4@SiO2-NH2@MnPor catalyst. The resulting nanoparticles were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), FT-IR spectroscopy, UV-Vis spectroscopy, elemental analysis (CHN), atomic absorption spectroscopy (AAS), and vibrating... 

    Ugi four-component assembly process: An efficient approach for one-pot multifunctionalization of nanographene oxide in water and its application in lipase immobilization

    , Article Chemistry of Materials ; Volume 28, Issue 9 , 2016 , Pages 3004-3016 ; 08974756 (ISSN) Rezaei, A ; Akhavan, O ; Hashemi, E ; Shamsara, M ; Sharif University of Technology
    American Chemical Society  2016
    Abstract
    Graphene-based materials are revealing the leading edge of advanced technology for their exceptional physical and chemical properties. Chemical manipulation on graphene surface to tailor its unique properties and modify atomic structures is being actively pursued. Therefore, the discovery of robust and general protocols to anchor active functionality on graphene basal plane is still of great interest. Multicomponent reactions promise an enormous level of interest due to addressing both diversity and complexity in combinatorial synthesis, in which more than two starting compounds react to form a product derived from entire inputs. In this article, we present the first covalent... 

    Covalent immobilization of cellulase using magnetic poly(ionic liquid) support: improvement of the enzyme activity and stability

    , Article Journal of Agricultural and Food Chemistry ; Volume 66, Issue 4 , 2018 , Pages 789-798 ; 00218561 (ISSN) Hosseini, H ; Hosseini, A ; Zohreh, N ; Yaghoubi, M ; Pourjavadi, A ; Sharif University of Technology
    American Chemical Society  2018
    Abstract
    A magnetic nanocomposite was prepared by entrapment of Fe3O4 nanoparticles into the cross-linked ionic liquid/epoxy type polymer. The resulting support was used for covalent immobilization of cellulase through the reaction with epoxy groups. The ionic surface of the support improved the adsorption of enzyme, and a large amount of enzyme (106.1 mg/g) was loaded onto the support surface. The effect of the presence of ionic monomer and covalent binding of enzyme was also investigated. The structure of support was characterized by various instruments such as FT-IR, TGA, VSM, XRD, TEM, SEM, and DLS. The activity and stability of immobilized cellulase were investigated in the prepared support. The... 

    Covalently immobilized laccase onto graphene oxide nanosheets: Preparation, characterization, and biodegradation of azo dyes in colored wastewater

    , Article Journal of Molecular Liquids ; Volume 276 , 2019 , Pages 153-162 ; 01677322 (ISSN) Kashefi, S ; Borghei, S. M ; Mahmoodi, N. M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, graphene oxide (GO) was synthesized via modified Hummer's method and exploited as an ideal enzyme immobilization support due to its exclusive chemical and structural features. Then, laccase from genetically modified Aspergillus was covalently immobilized onto GO (nanobiocatalyst). Enzymatic characterization of the nanobiocatalyst exhibited promising results: laccase loading of 156.5 mg g−1 and immobilization yield of 64.6% at laccase concentration of 0.9 mg/ mL. Further employment of various structural characterization techniques including Fourier Transform Infrared Spectroscopy (FTIR), X-ray Powder Diffraction (XRD), Scanning Electron Microscopy (SEM), Thermo-Gravimetric...