Loading...
Search for: copper-catalyst
0.003 seconds

    Magnetic nanoparticles entrapped in the cross-linked poly(imidazole/imidazolium) immobilized Cu(ii): An effective heterogeneous copper catalyst

    , Article RSC Advances ; Volume 4, Issue 87 , 2014 , Pages 46418-46426 ; ISSN: 20462069 Pourjavadi, A ; Hosseini, S. H ; Zohreh, N ; Bennett, C ; Sharif University of Technology
    Abstract
    Anchoring of copper sulfate in layered poly(imidazole-imidazolium) coated magnetic nanoparticles provided a highly stable, active, reusable, high loading, and green catalyst for the click synthesis of 1,2,3-triazoles via a one-pot cycloaddition of alkyl halide, azide, and alkyne (Cu-A3C). The catalyst was characterized by FTIR, TGA, TEM, SEM, XRD, EDAX, VSM and AAS. High selectivity, broad diversity of alkyl/benzyl bromide/chloride and alkyl/aryl terminal alkynes, and good to excellent yields of products were obtained using 0.7 mol% catalyst. The catalyst was readily recovered and reused up to 6 times without significant loss of activity  

    Graphene oxide/poly(vinyl imidazole) nanocomposite: An effective support for preparation of highly loaded heterogeneous copper catalyst

    , Article Applied Organometallic Chemistry ; Volume 29, Issue 9 , June , 2015 , Pages 601-607 ; 02682605 (ISSN) Pourjavadi, A ; Safaie, N ; Hosseini, S. H ; Bennett, C ; Sharif University of Technology
    John Wiley and Sons Ltd  2015
    Abstract
    A heterogeneous polymeric catalyst was synthesized by immobilization of copper ions in a graphene oxide/poly(vinyl imidazole) nanocomposite. This catalyst has proven to be highly active in a practical protocol for click synthesis of 1,2,3-triazole via one-pot three-component cycloaddition of halides, terminal alkynes and sodium azide. The reaction was carried out in water medium and good to excellent yields of products were obtained using only 1.0 mol% of catalyst. The catalyst can be readily recovered and reused eight times under the described reaction conditions without significant loss of activity. The reaction also proceeded well with only 0.002 mol% of catalyst, which shows the high... 

    Copper loaded cross-linked poly(ionic liquid): Robust heterogeneous catalyst in ppm amount

    , Article RSC Advances ; Volume 5, Issue 38 , 2015 , Pages 29609-29617 ; 20462069 (ISSN) Pourjavadi, A ; Hosseini, S. H ; Matloubi Moghaddam, F ; Ayati, S. E ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    A novel heterogeneous copper catalyst was synthesized in which poly(1-vinyl imidazole-co-ionic liquid) was used as a solid heterogeneous support. The catalyst was readily synthesized in a large scale amount. The catalyst has a high loading level of copper ions and can be used in low weight percentages. The resulting catalyst was highly active in the preparation of triazoles by the Huisgen 1,3-dipolar cycloaddition method. In some cases the catalytic turnover number and frequency reached 70 002 and 3889 h-1, respectively. The catalyst was recycled many times without significant loss of activity. This journal is  

    Copper immobilized onto a triazole functionalized magnetic nanoparticle: A robust magnetically recoverable catalyst for "click" reactions

    , Article RSC Advances ; Volume 5, Issue 5 , 2015 , Pages 3894-3902 ; 20462069 (ISSN) Matloubi Moghaddam, F ; Ayati, S. E ; Sharif University of Technology
    Abstract
    A novel magnetic heterogeneous copper catalyst was synthesized by immobilization of copper ions onto triazole functionalized Fe3O4. The catalyst was fully characterized by FT-IR, TGA, CHN, SEM, TEM, EDX and atomic adsorption spectroscopy. The resulting catalyst was used in the synthesis of 1,2,3-triazoles via a one-pot three component reaction of alkynes, alkyl halides, sodium azides under green conditions. The catalyst was reused ten times and no significant loss of activity was observed  

    Magnetic starch nanocomposite as a green heterogeneous support for immobilization of large amounts of copper ions: Heterogeneous catalyst for click synthesis of 1,2,3-triazoles

    , Article RSC Advances ; Volume 6, Issue 23 , 2016 , Pages 19128-19135 ; 20462069 (ISSN) Pourjavadi, A ; Motamedi, A ; Hosseini, S. H ; Nazari, M ; Sharif University of Technology
    Royal Society of Chemistry 
    Abstract
    A new magnetic heterogeneous copper catalyst was prepared by immobilization of copper ions onto a cross-linked polymeric nanocomposite composed of starch grafted polyacrylamide and functionalized Fe3O4 magnetic nanoparticles. The resulting support was loaded with large amounts of copper ions (1.6 mmol g-1). The prepared catalyst is highly active in Huisgen 1,3-dipolar cycloaddition reactions of different azides and alkynes at low catalyst amounts. Various corresponding 1,2,3-triazoles were produced with high yields in mild conditions. The catalyst was easily recovered and reused for ten cycles of reaction and no significant loss of catalytic activity was observed  

    Immobilization of copper ions onto α-amidotriazole-functionalized magnetic nanoparticles and their application in the synthesis of triazole derivatives in water

    , Article Applied Organometallic Chemistry ; Volume 30, Issue 6 , 2016 , Pages 488-493 ; 02682605 (ISSN) Matloubi Moghaddam, F ; Ayati, S. E ; Firouzi, H. R ; Ghorbani, F ; Sharif University of Technology
    John Wiley and Sons Ltd 
    Abstract
    A new heterogeneous copper catalyst was synthesized by immobilization of copper ions onto magnetic nanoparticles with a new ligand based on triazole. The catalyst was characterized using scanning and transmission electron microscopies, atomic absorption and Fourier transform infrared spectroscopies, and thermogravimetric, elemental and energy-dispersive X-ray analyses. The results confirmed that a good level of organic groups was immobilized on the magnetic nanoparticles. Huisgen cycloaddition reaction was chosen as a model reaction for the investigation of catalyst activity under green conditions. Phenylacetylene and benzyl bromide derivatives were used for the synthesis of triazoles. The...