Loading...
Search for: convective-heat-transfer
0.011 seconds
Total 73 records

    Experimental study of internal forced convection of ferrofluid flow in non-magnetizable/magnetizable porous media

    , Article Experimental Thermal and Fluid Science ; Volume 96 , 2018 , Pages 441-450 ; 08941777 (ISSN) Shafii, M. B ; Keshavarz, M ; Sharif University of Technology
    Elsevier Inc  2018
    Abstract
    In this work, the thermal and hydrodynamic performance of ferromagnetic fluid, which flows through a copper tube in thermal entrance region, has been studied. The flow in the tube is laminar and subjected to constant heat flux. A part of the tube contains a porous medium with paramagnetic properties and porosity of 0.46. Ferrofluid is composed of Fe3o4 and water with (CH3)4NOH as a surfactant that is prepared in three different volume fractions. The effects of constant and oscillating magnetic fields on convective heat transfer coefficient were examined for various Reynolds numbers, frequencies and volume fractions. The results show that the maximum enhancements of average heat transfer... 

    Experimental Investigation of Nano Particle Effect on Heat Transfer in a Micro Heat Exchanger

    , M.Sc. Thesis Sharif University of Technology Jafarpoor Chekab, Hamideh (Author) ; Shafii, Mohammad Behshad (Supervisor) ; Saidi, Mohammad Hassan (Supervisor) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    Modern microelectronic systems generate a large amount of heat which must be transferred out of the system without excessive temperature rise. Conventional forced air convection and microchannel cooling plates have reached their performance limits Nanofiuids are proposed as an innovative way to solve the problem. A nanofiuid is nanoscale solid particles dispersed in a traditional heat transfer liquid. Some studies show an anomalous increase in the thermal conductivity for stationary nanofiuids. However, there are only few previous studies on the convection heat transfer rate and viscosity of nanofiuids. Both convection and stationary measurements of the thermal conductivity are widely... 

    Performance optimization of solar chimney power plant using electric/corona wind

    , Article Journal of Electrostatics ; Volume 78 , 2015 , Pages 22-30 ; 03043886 (ISSN) Nasirivatan, S ; Kasaeian, A ; Ghalamchi, M ; Ghalamchi, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The effect of the corona wind on the natural convection at absorber of a solar chimney power plant pilot was investigated experimentally. The aim of the study is to improve the efficiency of SCPP through enhanced the heat transfer coefficient of absorber with corona wind. The results show that corona wind enhanced the absorber convective heat transfer coefficient leading to increment in air the velocity and the output power of the SCPP. The amount of heat transfer of pilot increased more than 14.5% when applying voltage of 15 KV and the speed in chimney experienced about 72% amelioration  

    Experimental assessment of convective heat transfer coefficient enhancement of nanofluids prepared from high surface area nanoporous graphene

    , Article International Communications in Heat and Mass Transfer ; Volume 78 , 2016 , Pages 127-134 ; 07351933 (ISSN) Naghash, A. S ; Sattari, S ; Rashidi, A. M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    In this research convective heat transfer coefficient enhancement of nanofluids prepared from high surface area graphene has been investigated in laminar flow in the developing region. The nanofluid has been prepared from nanoporous graphene with high surface area and with concentration of 0.025 to 0.1 wt.%. Deionized water has been used as the base fluid and a type of Ter-Polymer has been utilized as the surfactant. The results indicate that thermal conductivity of nanofluid with concentration of 0.1 wt.% remains quite constant, with only 3.8% enhancement, while convective heat transfer coefficient improves significantly, with 34% enhancement. The behavior of this enhancement related to the... 

    Experimental investigation on the thermal performance of ultra-stable kerosene-based MWCNTs and Graphene nanofluids

    , Article International Communications in Heat and Mass Transfer ; Volume 108 , 2019 ; 07351933 (ISSN) Askari, S ; Rashidi, A ; Koolivand, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A simple chemisorption method was used to graft on the surface of MWCNTs and Graphene nanoparticles to prepare stable kerosene-based MWCNTs and Graphene nanofluids. The prepared nanofluids remained stable for more than five months and no sedimentation was observed. Regarding the effect of temperature on thermo-physical properties, it was observed that although increasing nanoparticle concentration led to an increase in the fluid viscosity, it was negligible enough at lower nanoparticle loading. Moreover, adding nanoparticles to the base fluid did not have any noticeable impact on the fluid density which was negligible even at high concentrations. The thermal conductivity improvement was... 

    Experimental investigation on laminar forced convection heat transfer of ferrofluids under an alternating magnetic field

    , Article Experimental Thermal and Fluid Science ; Volume 49 , 2013 , Pages 193-200 ; 08941777 (ISSN) Ghofrani, A ; Dibaei, M. H ; Hakim Sima, A ; Shafii, M. B ; Sharif University of Technology
    2013
    Abstract
    This research study presents an experimental investigation on forced convection heat transfer of an aqueous ferrofluid flow passing through a circular copper tube in the presence of an alternating magnetic field. The flow passes through the tube under a uniform heat flux and laminar flow conditions. The primary objective was to intensify the particle migration and disturbance of the boundary layer by utilizing the magnetic field effect on the nanoparticles for more heat transfer enhancement. Complicated convection regimes caused by interactions between magnetic nanoparticles under various conditions were studied. The process of heat transfer was examined with different volume concentrations... 

    Experimental investigation on laminar forced convective heat transfer of ferrofluid loaded with carbon nanotubes under constant and alternating magnetic fields

    , Article Experimental Thermal and Fluid Science ; Volume 76 , 2016 , Pages 1-11 ; 08941777 (ISSN) Shahsavar, A ; Saghafian, M ; Salimpour, M. R ; Shafii, M. B ; Sharif University of Technology
    Elsevier Inc 
    Abstract
    In this paper, the effects of both constant and alternating magnetic fields on the laminar forced convective heat transfer of a hybrid nanofluid containing tetramethylammonium hydroxide (TMAH) coated Fe3O4 nanoparticles and gum arabic (GA) coated carbon nanotubes (CNTs) flowing through a heated tube were investigated experimentally. The experiments were carried out over wide range of parameters such as Reynolds number (548-2190), volume concentrations of Fe3O4 (0.5-0.9%) and carbon nanotube (0.25-1.35%) nanoparticles, magnetic field strength (300-700 Gauss) and alternating magnetic field frequency (10-50 Hz). In present study, the experimental observations in the case without magnetic field... 

    CFD modeling of turbulent convection heat transfer of nanofluids containing green functionalized graphene nanoplatelets flowing in a horizontal tube: Comparison with experimental data

    , Article Journal of Molecular Liquids ; Volume 269 , 2018 , Pages 152-159 ; 01677322 (ISSN) Sadri, R ; Mallah, A. R ; Hosseini, M ; Ahmadi, G ; Kazi, S. N ; Dabbagh, A ; Yeong, C. H ; Ahmad, R ; Yaakup, N. A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this research, a series of numerical simulations were conducted utilizing computational fluid dynamics (CFD) software in order to predict the heat transfer performance of queues nanofluids containing clove-treated graphene nanoplatelets (CGNPs) flowing in a horizontal stainless steel heated pipe. The GNPs were covalently functionalized with clove buds using free radical grafting reaction using an eco-friendly process. The advantage of this synthesis method was that it did not use hazardous acids, which are typically used in traditional treatment methods of carbon nanostructures. The thermo-physical properties of the aqueous nanofluids obtained experimentally were used as inputs for the... 

    Two-dimensional numerical investigation of a micro combustor

    , Article Scientia Iranica ; Volume 17, Issue 6 B , December , 2010 , Pages 433-442 ; 10263098 (ISSN) Irani Rahaghi, A ; Saidi, M. S ; Saidi, M. H ; Shafii, M. B ; Sharif University of Technology
    2010
    Abstract
    In this paper, a two-dimensional numerical approach is used to study the effect of micro combustor height, mass flow rate and external convection heat transfer coefficient on the temperature and species mass fraction profiles. A premixed mixture of H2-Air with a multi-step chemistry is used. The transient gas phase energy and species conservation equations result in an Advection-Diffusion-Reaction system that leads to two stiff systems of PDEs. In the present work, the computational domain is solved through the Strang splitting method, which is suitable for a nonlinear stiff system of PDEs. A revised boundary condition for the velocity equation is applied and its effect on the flow... 

    Approximate method of determining the optimum cross section of microhannel heat sink

    , Article Journal of Mechanical Science and Technology ; Volume 23, Issue 12 , 2010 , Pages 3448-3458 ; 1738494X (ISSN) Asgari, O ; Saidi, M.H ; Sharif University of Technology
    2010
    Abstract
    Microchannels are at the forefront of today's cooling technologies. They are widely being considered for cooling of electronic devices and in micro heat exchanger systems due to their ease of manufacture. One issue which arises in the use of microchannels is related to the small length scale of the channel or channel cross-section. In this work, the maximum heat transfer and the optimum geometry for a given pressure loss have been calculated for forced convective heat transfer in microchannels of various cross-section having finite volume for laminar flow conditions. Solutions are presented for 10 different channel cross sections: parallel plate channel, circular duct, rectangular channel,... 

    Experimental of Convective Heat Transfer Coefficient Around a Vertical Rod Bundle

    , M.Sc. Thesis Sharif University of Technology Molla Bagher Makhmalbaf, Mohammad Hadi (Author) ; Jafari, Jalil (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Abstract
    Research on convective heat transfer coefficient around a rod bundle has several applications in industry. So far, many studies have been conducted in correlations related to internal fully developed flow. By comparing Dittus-Boelter, Sieder-Tate and Petukhov found to be more practical. The present study examines the validity of these frequently applied correlations experimentally. A thermohydraulic loop has been designed and manufactured to test and measuring the convective heat transfer coefficient. Due to its generalizibility, the unique geometry of this test facility (hexagonal arranged, 7 vertical rods in a hexagonal tube) has achieved extensive application. The major deviation factors... 

    Modeling, Analysis and Possible Solution for Excessive Intraocular Pressure in Glaucoma Patients

    , M.Sc. Thesis Sharif University of Technology Singh, Dara (Author) ; Firouzbakhsh, Keykhosrow (Supervisor)
    Abstract
    With the advent of new computer technologies, computational analysis on the human organs has become tremendously popular in the field of medical science. Every year thousands of people suffer irreversible eye damages pertaining to lack of adequate medications. In this regards, enormous amount of money is spent annually but mostly in vain due to the irreversibility and silent nature of eye diseases like glaucoma. Yet more precise studies on the topic are requisite. In this thesis, a validated half 3D finite volume model of human eye considering the fluid flow in collaboration with heat transfer in the steady state utilizing the well known discretized bio-heat transfer equation coupled with... 

    Performance of Partially Filled Mini-Channels with Porous Media

    , M.Sc. Thesis Sharif University of Technology Azimi, Adel (Author) ; Nouri, Ali (Supervisor) ; Moosavi, Ali (Co-Advisor)
    Abstract
    Laminar forced convection flow through a channel partially filled with a porous material was numerically studied in this thesis. The Navier-Stokes and Brinkman-Forchheimer equations were used to model the fluid flow in the free and porous regions, respectively. Coupling of the pressure and velocity fields was resolved using the SIMPLEC algorithm. The local thermal equilibrium was adopted in the energy equation. The effects of the thermal conductivity ratio, Darcy number, porosity, Reynolds number and height of the porous insert on velocity and temperature field were investigated. The results show that the flow behavior and its associated heat transfer are susceptible to the variation of the... 

    Preparation of Nano Fluid from Carbon Nano Structures with High Surface Area in Order to Improve the Heat Transfer Coefficient in Heat Exchangers

    , M.Sc. Thesis Sharif University of Technology Naghash Chimeh, Amir Saleh (Author) ; Sattari, Sorena (Supervisor) ; Rashidi, Alimorad (Co-Advisor)
    Abstract
    In this research convective heat transfer coefficient enhancement of nanofluids prepared from high surface area graphene has been investigated in laminar flow in the developing region. The nanofluid has been prepared from nanoporous graphene with high surface area and with concentration of 0.025 to 0.1 %wt. Deionized water has been used as the base fluid and a type of Ter-Polymer has been utilized as the surfactant. The results indicate that thermal conductivity of nanofluid with concentration of 0.1 %wt remains quite constant, with only %3.8 enhancement, while convective heat transfer coefficient improves significantly, with 34% enhancement. The behavior of this enhancement related to the... 

    Mixed Convection of Magnetic Nanofluids in Channels Filled with a Porous Medium in the Presence of External Magnetic Field

    , Ph.D. Dissertation Sharif University of Technology Fadaei, Farzad (Author) ; Molaei, Asghar (Supervisor) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    In this research work, mixed convection heat transfer of ferrofluids (i.e., magnetite nanoparticle) in a circular pipe fully filled with a porous medium in the presence of constant and alternating magnetic fields has been investigated both numerically and experimentally. The duct was heated by a heating coil and the magnetic field was applied via four electromagnets with U shaped ferrite cores and a frequency inverter. The nanoparticles were synthesized using co-precipitation method and coated with a surfactant (i.e., Tween 80) and doubled distilled water was used as the base fluid. To characterize the synthesized nanoparticles, various analyzing techniques such as VSM, SEM, and XRD were... 

    Experimental study on convective heat transfer coefficient around a vertical hexagonal rod bundle

    , Article Heat and Mass Transfer/Waerme- und Stoffuebertragung ; Volume 48, Issue 6 , 2012 , Pages 1023-1029 ; 09477411 (ISSN) Makhmalbaf, M. H. M ; Sharif University of Technology
    2012
    Abstract
    Research on convective heat transfer coefficient around a rod bundle has many diverse applications in industry. So far, many studies have been conducted in correlations related to internal and turbulent fully-developed flow. Comparison shows that Dittus-Boelter, Sieder-Tate and Petukhov have so far been the most practical correlations in fully-developed turbulent fluid flow heat transfer. The present study conducts an experimental examination of the validity of these frequently-applied correlations and introduces a manufactured test facility as well. Due to its generalizibility, the unique geometry of this test facility (hexagonal arranged, 7 vertical rods in a hexagonal tube) can fulfil... 

    Experimental study of forced convection heat transfer from a cam shaped tube in cross flows

    , Article International Journal of Heat and Mass Transfer ; Volume 50, Issue 13-14 , 2007 , Pages 2605-2611 ; 00179310 (ISSN) Nouri Borujerdi, A ; Lavasani, A. M ; Sharif University of Technology
    2007
    Abstract
    An experimental investigation has been conducted to clarify forced convection heat transfer characteristic and flow behavior of an isothermal cam shaped tube in cross flow. The range of angle of attack and Reynolds number based on an equivalent circular tube are within 0° < α < 180° and 1.5 × 104 < Reeq < 2.7 × 104, respectively. The results show that the mean heat transfer coefficient is a maximum at about α = 90° over the whole range of the Reynolds numbers. It is found that thermal hydraulic performance of the cam shaped tube is larger than that of a circular tube with the same surface area except for α = 90° and 120°. Furthermore, the effect of the diameter of the cam shaped tube upon... 

    Effects of preheating temperature and cooling rate on two-step residual stress in thermal barrier coatings considering real roughness and porosity effect

    , Article Ceramics International ; Vol. 40, Issue. 10 , December , 2014 , pp. 15925-15940 ; ISSN: 02728842 Rezvani Rad, M ; Farrahi, G. H ; Azadi, M ; Ghodrati, M ; Sharif University of Technology
    Abstract
    In this research, a finite element model was developed in order to simulate the two-step residual stress distribution of a thermal barrier coating system, considered to be used in diesel engine cylinder head, with a real roughness and real porosity. Two steps including the bond coat and the top coat deposition processes were taken into account. The real geometry of coating layers, including the roughness and the porosity, was also considered based on a scanning electron microscopy image. Then, effects of the convective heat transfer coefficient and initial substrate and substrate/bond coat preheating temperatures on the residual stress were studied. Obtained results illustrate that the... 

    Experimental investigation of forced convective heat transfer coefficient in nanofluids of Al2O3/EG and CuO/EG in a double pipe and plate heat exchangers under turbulent flow

    , Article Experimental Thermal and Fluid Science ; Volume 35, Issue 3 , April , 2011 , Pages 495-502 ; 08941777 (ISSN) Zamzamian, A ; Oskouie, S. N ; Doosthoseini, A ; Joneidi, A ; Pazouki, M ; Sharif University of Technology
    2011
    Abstract
    Nanofluid is the term applied to a suspension of solid, nanometer-sized particles in conventional fluids; the most prominent features of such fluids include enhanced heat characteristics, such as convective heat transfer coefficient, in comparison to the base fluid without considerable alterations in physical and chemical properties. In this study, nanofluids of aluminum oxide and copper oxide were prepared in ethylene glycol separately. The effect of forced convective heat transfer coefficient in turbulent flow was calculated using a double pipe and plate heat exchangers. Furthermore, we calculated the forced convective heat transfer coefficient of the nanofluids using theoretical... 

    Numerical simulation of turbulent heat transfer on a rotating disk with an impinging jet

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 2 , 2010 , Pages 627-631 ; 9780791849163 (ISBN) Saidi, M. H ; Karrabi, H ; Avval, H. B ; Asgarshamsi, A ; Sharif University of Technology
    Abstract
    A numerical study has been carried out to investigate the fluid flow structure and convective heat transfer due to a circular jet impinging on a rotating disk. The temperature distribution and convection heat transfer coefficient on the disk are calculated. Flow is considered to be steady, incompressible and turbulent. k-e RNG model is used to model the turbulent flow. Two new criteria are introduced and used to evaluate the performance of cooling process which are maximum temperature difference on the disk and the average temperature of the disk. The first parameter shows the uniformity of temperature distribution in the disk and the second shows the effect of both thermo physical...