Loading...
Search for: control-techniques
0.008 seconds
Total 29 records

    Adaptive regulation and set-point tracking of the Lorenz attractor

    , Article Chaos, Solitons and Fractals ; Volume 32, Issue 2 , 2007 , Pages 832-846 ; 09600779 (ISSN) Nejat Pishkenari, H ; Shahrokhi, M ; Mahboobi, S. H ; Sharif University of Technology
    2007
    Abstract
    In this paper, an approach is proposed for controlling the uncertain Lorenz system. Based on an identification technique, a controller is designed that guarantees the regulation of all states in the presence of system uncertainty. Since in some applications the challenging problem of output tracking is desired, we have proposed several effective set-point tracking control techniques. The control schemes that are based on the feedback linearization method, can stabilize the internal dynamics of the system. Simulation results have illustrated the effectiveness of the proposed schemes. © 2005 Elsevier Ltd. All rights reserved  

    Hybrid stepper motor backstepping control in micro-step operation

    , Article 2005 ASME International Mechanical Engineering Congress and Exposition, IMECE 2005, Orlando, 5 November 2005 through 11 November 2005 ; Volume 118 B, Issue 2 , 2005 , Pages 993-997 Ghafari, A. S ; Alasty, A ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2005
    Abstract
    A nonlinear position controller based on backstepping control technique is proposed for a hybrid stepper motor in micro-step operation. Backstepping control approach is adapted to derive the control scheme, which is robust to parameter uncertainties and external load disturbance. Simulation results clearly show that the proposed controller can track the position reference signal successfully under parameter uncertainties and load torque disturbance rejection. Copyright © 2005 by ASME  

    Dynamic modeling and optimal control of a novel microswimmer with gimbal based disks

    , Article Robotica ; Volume 39, Issue 8 , 2021 , Pages 1468-1484 ; 02635747 (ISSN) Nickandish, A ; Pishkenari, H. N ; Sharif University of Technology
    Cambridge University Press  2021
    Abstract
    We have introduced a new low-Reynolds-number microrobot with high 3D maneuverability. Our novel proposed microrobot has a higher rank of the controllability matrix with respect to the previous microswimmers which makes it capable of performing complex motions in space. In this study, governing equations of the microswimmer's motion have been derived and simulated. Subsequently, we have proposed a cascade optimal control technique to control the swimmer trajectory. In the proposed control scheme, the actuation is provided in a way that an exponential stability on the system trajectory error as well as minimum fluctuations of control signals are achieved. © The Author(s), 2021. Published by... 

    Minimum entropy control of chaos via online particle swarm optimization method

    , Article Applied Mathematical Modelling ; Vol. 36, Issue. 8 , 2012 , pp. 3931-3940 ; ISSN: 0307904X Sadeghpour, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Abstract
    One of the recently developed approaches for control of chaos is the minimum entropy (ME) control technique. In this method an entropy function based on the Shannon definition, is defined for a chaotic system. The control action is designed such that the entropy as a cost function is minimized which results in more regular pattern of motion for the system trajectories. In this paper an online optimization technique using particle swarm optimization (PSO) method is developed to calculate the control action based on ME strategy. The method is examined on some standard chaotic maps with error feedback and delayed feedback forms. Considering the fact that the optimization is online, simulation... 

    Quantum metrology in open systems: Dissipative cramer-rao bound

    , Article Physical Review Letters ; Volume 112, Issue 12 , 2014 ; 00319007 (ISSN) Alipour, S ; Mehboudi, M ; Rezakhani, A. T ; Sharif University of Technology
    American Physical Society  2014
    Abstract
    Estimation of parameters is a pivotal task throughout science and technology. The quantum Cramér-Rao bound provides a fundamental limit of precision allowed to be achieved under quantum theory. For closed quantum systems, it has been shown how the estimation precision depends on the underlying dynamics. Here, we propose a general formulation for metrology scenarios in open quantum systems, aiming to relate the precision more directly to properties of the underlying dynamics. This feature may be employed to enhance an estimation precision, e.g., by quantum control techniques. Specifically, we derive a Cramér-Rao bound for a fairly large class of open system dynamics, which is governed by a... 

    Stabilisation of commensurate fractional-order polytopic non-linear differential inclusion subject to input non-linearity and unknown disturbances

    , Article IET Control Theory and Applications ; Volume 7, Issue 12 , 2013 , Pages 1624-1633 ; 17518644 (ISSN) Abooee, A ; Haeri, M ; Sharif University of Technology
    2013
    Abstract
    In this study, a fractional-order adaptive-sliding mode control (SMC) scheme is proposed to stabilise commensurate fractional-order polytopic non-linear differential inclusion systems containing sector and dead-zone nonlinearities in the control inputs and unknown bounded disturbances. The suggested control method is composed of fractional-order sliding surfaces, adaptive-SMC inputs and adaptation laws for unknown bounds of disturbances. The Lyapunov stability theorem is used to prove the stability of the closed-loop system. A practical system and two numerical examples are simulated to show the effectiveness and performance of the proposed control technique  

    Static feedback versus fractionality of the electrical elements in the Van der Pol circuit

    , Article Nonlinear Dynamics ; Volume 72, Issue 1-2 , 2013 , Pages 365-375 ; 0924090X (ISSN) Tavakoli Kakhki, M ; Tavazoei, M. S ; Sharif University of Technology
    2013
    Abstract
    In this paper, it is shown that by benefiting from a static feedback control signal it is possible to reduce the effect of fractionality of the electrical capacitors on the amplitude of the oscillations produced by a Van der Pol circuit. The averaging method is used in this paper for the behavior analysis of the approximated responses of the under study circuits. Numerical simulation results are presented to confirm the effectiveness of the proposed control technique  

    Control of resistance spot welding using model predictive control

    , Article 9th International Conference on Electrical and Electronics Engineering, 26 November 2015 through 28 November 2015 ; 2015 , Pages 864-868 ; 9786050107371 (ISBN) Hemmati, M ; Haeri, M ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    Nowadays, the need for industrial processes with sufficient accuracy, efficiency, and flexibility to compete world markets is inevitable. On the other hand, the advent of control techniques and increased computation power of CPUs allow implementation of complex controllers using optimization techniques to provide higher efficiency and economic productivity. Model predictive control refers to a wide range of optimization-based control methods applying explicit models to predict its prospective use. These methods of control compute control signal by minimizing the cost function so that the process output becomes very close to the optimal path. In this paper, we use a new model predictive... 

    Improved optimal control technique for control of parallel three- phase inverters

    , Article 2009 International Conference on Electric Power and Energy Conversion Systems, EPECS 2009, Sharjah, 10 November 2009 through 12 November 2009 ; 2009 ; 9789948427155 (ISBN) pouya, H. R. N ; Mokhtari, H ; Sharif University of Technology
    Abstract
    This paper proposes a high performance voltage tracking and current sharing among parallel connected inverters by applying optimal control and minimizing the cost function. The control system forces the voltage of load to track the voltage reference, and the current of all inverters becomes equal. Therefore, both current sharing and voltage tracking are obtained. In addition, the smallest input energy and simplicity in control circuit are the other advantages of the suggested method. To show the performance of the proposed control scheme, the simulations with two-modular practical systems are performed and the results are provided. The results indicate that the control objectives are... 

    Frequency data-based procedure to adjust gain and phase margins and guarantee the uniqueness of crossover frequencies

    , Article IEEE Transactions on Industrial Electronics ; Volume 67, Issue 3 , 2020 , Pages 2176-2185 Sayyaf, N ; Tavazoei, M. S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2020
    Abstract
    Analytical data-driven tuning procedures with the aim of adjusting the values of frequency-domain specifications, e.g., gain margin, phase margin, and corresponding crossover frequencies, are among the most popular control techniques in industrial control. But, the multiplicity of crossover frequencies, as an Achilles' heel in these procedures, may cause that the obtained control system does not meet the intended frequency-domain objectives. Motivated by this fact, this paper improves a newly proposed data-driven tuning procedure for arbitrarily setting the values of gain and phase margins and crossover frequencies, in the viewpoint of guaranteeing the uniqueness of crossover frequencies.... 

    A Review on chemical sand production control techniques in oil reservoirs

    , Article Energy and Fuels ; 2022 ; 08870624 (ISSN) Saghandali, F ; Baghban Salehi, M ; Hosseinzadehsemnani, R ; Moghanloo, R. G ; Taghikhani, V ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    This review aims to bring together the studies on petroleum reservoirs' sand production control in a comprehensive guide for the researcher to compare various methods for the chemical consolidation of sand. Sand production can be considered one of the major challenges in the petroleum production industry, causing severe operational issues. This study introduces various methods to control and prevent sand production in petroleum wells and evaluates their advantages and performance in tabular form. The use of chemical procedures is considered to be more efficient in counteracting the production and migration of sand. Various chemicals and polymers have been proposed for this purpose. These... 

    Position Control of Magnetic Catheter with External Permanent Magnet

    , M.Sc. Thesis Sharif University of Technology Gholamali Sinaki, Mahbod (Author) ; Selk Ghafari, Ali (Supervisor) ; Nejat Pishkenari, Hossein (Supervisor)
    Abstract
    The precise positioning of magnetic catheters is critical for a range of medical procedures, ensuring efficacy while minimizing potential complications. This research delves into the position control of a magnetic catheter influenced by an external permanent magnet. Due to the intricate and complex equations describing the plant's behavior, a neural network approach was deemed suitable for modeling. Using a 5 degree of freedom manipulator carrying an external permanent magnet, data was gathered from real-world positionings, tracking the coordination of the magnetic catheter's end. These data points served to train the neural network, subsequently allowing for an effective simulation of the... 

    variable control of chaos using PSO-based minimum entropy control

    , Article Communications in Nonlinear Science and Numerical Simulation ; Vol. 16, Issue. 6 , 2011 , pp. 2397-2404 ; ISSN: 10075704 Sadeghpour, M ; Salarieh, H ; Vossoughi, G ; Alasty, A ; Sharif University of Technology
    Abstract
    The minimum entropy (ME) control is a chaos control technique which causes chaotic behavior to vanish by stabilizing unstable periodic orbits of the system without using mathematical model of the system. In this technique some controller type, normally delayed feedback controller, with an adjustable parameter such as feedback gain is used. The adjustable parameter is determined such that the entropy of the system is minimized. Proposed in this paper is the PSO-based multi-variable ME control. In this technique two or more control parameters are adjusted concurrently either in a single or in multiple control inputs. Thus it is possible to use two or more feedback terms in the delayed feedback... 

    A novel robust decentralized adaptive fuzzy control for swarm formation of multiagent systems

    , Article IEEE Transactions on Industrial Electronics ; Volume 59, Issue 8 , 2012 , Pages 3124-3134 ; 02780046 (ISSN) Ranjbar-Sahraei, B ; Shabaninia, F ; Nemati, A ; Stan, S. D ; Sharif University of Technology
    IEEE  2012
    Abstract
    In this paper, a novel decentralized adaptive control scheme for multiagent formation control is proposed based on an integration of artificial potential functions with robust control techniques. Fully actuated mobile agents with partially unknown models are considered, where an adaptive fuzzy logic system is used to approximate the unknown system dynamics. The robust performance criterion is used to attenuate the adaptive fuzzy approximation error and external disturbances to a prescribed level. The advantages of the proposed controller can be listed as robustness to input nonlinearity, external disturbances, and model uncertainties, and applicability on a large diversity of autonomous... 

    Minimum entropy control of chaos via online particle swarm optimization method

    , Article Applied Mathematical Modelling ; Volume 36, Issue 8 , 2012 , Pages 3931-3940 ; 0307904X (ISSN) Sadeghpour, M ; Salarieh, H ; Alasty, A ; Sharif University of Technology
    Elsevier  2012
    Abstract
    One of the recently developed approaches for control of chaos is the minimum entropy (ME) control technique. In this method an entropy function based on the Shannon definition, is defined for a chaotic system. The control action is designed such that the entropy as a cost function is minimized which results in more regular pattern of motion for the system trajectories. In this paper an online optimization technique using particle swarm optimization (PSO) method is developed to calculate the control action based on ME strategy. The method is examined on some standard chaotic maps with error feedback and delayed feedback forms. Considering the fact that the optimization is online, simulation... 

    Multi-variable control of chaos using PSO-based minimum entropy control

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 16, Issue 6 , 2011 , Pages 2397-2404 ; 10075704 (ISSN) Sadeghpour, M ; Salarieh, H ; Vossoughi, G ; Alasty, A ; Sharif University of Technology
    2011
    Abstract
    The minimum entropy (ME) control is a chaos control technique which causes chaotic behavior to vanish by stabilizing unstable periodic orbits of the system without using mathematical model of the system. In this technique some controller type, normally delayed feedback controller, with an adjustable parameter such as feedback gain is used. The adjustable parameter is determined such that the entropy of the system is minimized. Proposed in this paper is the PSO-based multi-variable ME control. In this technique two or more control parameters are adjusted concurrently either in a single or in multiple control inputs. Thus it is possible to use two or more feedback terms in the delayed feedback... 

    Adaptive critic-based neuro-fuzzy controller in multi-agents: Distributed behavioral control and path tracking

    , Article Neurocomputing ; Volume 88 , July , 2012 , Pages 24-35 ; 09252312 (ISSN) Vatankhah, R ; Etemadi, S ; Alasty, A ; Vossoughi, G ; Sharif University of Technology
    Abstract
    In this paper, we follow two control tasks in a leader following frame with undirected network and local communications. As the first goal, distributed behavioral imitation, which is necessary to fit agents with complicated motion equations in kinematic frames, is discussed. Providing real agents with behavioral controller makes them capable to act as a kinematic particle. The second goal is to design an active leading strategy for the LA to move the group on a predefined path. Both problems can be mathematically modeled in an affine form, which is the reason behind using a unique adaptive controller to solve them. The controller is based on a neuro-fuzzy structure with critic-based leaning... 

    Efficient algorithms for online tracking of set points in robust model predictive control

    , Article International Journal of Systems Science ; Volume 48, Issue 8 , 2017 , Pages 1635-1645 ; 00207721 (ISSN) Razi, M ; Haeri, M ; Sharif University of Technology
    Abstract
    This paper presents some computationally efficient algorithms for online tracking of set points in robust model predictive control context subject to state and input constraints. The nonlinear systems are represented by a linear model along with an additive nonlinear term which is locally Lipschitz. As an unstructured uncertainty, this term is replaced in the robust stability constraint by its Lipschitz coefficient. A scheduled control technique is employed to transfer the system to desired set points, given online, by designing local robust model predictive controllers. This scheme includes estimating the regions of feasibility and stability of the related equilibriums and online switching... 

    Analysis of a deterministic power level selection algorithm with small and large power steps for Aloha networks under saturation

    , Article Wireless Networks ; Volume 15, Issue 3 , 2009 , Pages 407-418 ; 10220038 (ISSN) Khoshnevis, B ; Khalaj, B. H ; Sharif University of Technology
    2009
    Abstract
    Standard power control techniques are not deployable in Aloha networks due to lack of central controlling entity and/or inefficiency of such algorithms in large networks with bursty traffic. To handle this problem in practice, simple transmission power selection algorithms are used for ranging and/or combating harsh channel conditions. In such algorithms, the transmission power is steadily increased by an amount called power step, until the packet is successfully transmitted. Noting that ranging is the major concern of this approach, small power steps are ideal for its operation. However, as we will show in this paper, using small power steps with this algorithm causes a throughput collapse... 

    State waypoint approach to continuous-time nonlinear optimal control problems

    , Article Asian Journal of Control ; Volume 11, Issue 6 , 2009 , Pages 669-676 ; 15618625 (ISSN) Honarvarmahjoobin, M. H ; Tazaki, Y ; Imura, J. I ; Sharif University of Technology
    2009
    Abstract
    In this paper, we propose an optimal control technique for a class of continuous-time nonlinear systems. The key idea of the proposed approach is to parametrize continuous stale trajectories by sequences of a finite number of intermediate target states; namely, waypoint sequences. It is shown that the optimal control problem for transferring the state from one waypoint to the next is given an explicit-form suboptimal solution, by means of linear approximation. Thus the original continuous-time nonlinear control problem reduces to a finite-dimensional optimization problem of waypoint sequences. Any efficient numerical optimization method, such as the interior-reflection Newton method, can be...