Loading...
Search for: continuum-mechanics
0.009 seconds
Total 186 records

    Compact basis free relations for stress tensors conjugate to Hill's strain measures

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Naghdabadi, R ; Asghari, M ; Ghavam, K ; Sharif University of Technology
    American Society of Mechanical Engineers  2006
    Abstract
    If the double contraction of a stress tensor such as T and rate of a Lagrangean strain tensor such as E, i.e. T : Ė produces the stress power then these stress and strain tensors are called a conjugate pair. The applications of the conjugate stress and strain measures are in the development of the basic relations in nonlinear continuum mechanics analysis such as modeling of constitutive equations of elastic-plastic materials. In this paper relations for stress tensors conjugate to an arbitrary Lagrangean strain measure of Hill's class are obtained. The results of this paper are more compact and simpler in compare with those available in the literature. The results are valid for the three... 

    Basis free expressions for the stress rate of isotropic elastic materials in the cases of coalescent principal stretches

    , Article International Journal of Solids and Structures ; Volume 47, Issue 5 , 2010 , Pages 611-613 ; 00207683 (ISSN) Asghari, M ; Sharif University of Technology
    2010
    Abstract
    In this paper, some basis-free expressions for the material time derivative of Lagrangian stress tensors are presented which are generally valid in all cases of coalescent principal stretches. The material is assumed to be elastic and isotropic  

    The effect of local bending on gating of MscL using a representative volume element and finite element simulation

    , Article Channels ; Vol. 8, issue. 4 , 2014 , p. 344-349 Bavi, O ; Vossoughi, M ; Naghdabadi, R ; Jamali, Y ; Sharif University of Technology
    Abstract
    Many physiological processes such as cell division, endocytosis and exocytosis cause severe local curvature of the cell membrane. Local curvature has been shown experimentally to modulate numerous mechanosensitive (MS) ion channels. In order to quantify the effects of local curvature we introduced a coarse grain representative volume element for the bacterial mechanosensitive ion channel of large conductance (MscL) using continuum elasticity. Our model is designed to be consistent with the channel conformation in the closed and open states to capture its major continuum rheological behavior in response to the local membrane curvature. Herein we show that change in the local curvature of the... 

    An enriched-FEM model for simulation of localization phenomenon in Cosserat continuum theory

    , Article Computational Materials Science ; Volume 44, Issue 2 , December , 2008 , Pages 733-749 ; 09270256 (ISSN) Khoei, A. R ; Karimi, K ; Sharif University of Technology
    2008
    Abstract
    The standard finite element models, i.e. the finite element methods that use the classical continuum models, suffer from the excessive mesh dependence when a strain-softening model is used. It cannot converge to a meaningful solution and the governing differential equation loses the ellipticity. This paper presents an enriched finite element algorithm for simulation of localization phenomenon using a higher order continuum model based on the Cosserat continuum theory. The governing equations are regularized by adding the rotational degrees-of-freedom to the conventional degrees-of-freedom and including the internal length parameter in the model. The extended finite element method (X-FEM) is... 

    On the objective corotational rates of eulerian strain measures

    , Article Journal of Elasticity ; Volume 90, Issue 2 , 2008 , Pages 175-207 ; 03743535 (ISSN) Asghari, M ; Naghdabadi, R ; Sharif University of Technology
    2008
    Abstract
    In the present paper, some new basis-free expressions for an arbitrary objective corotational rate of the general Eulerian strain measures are provided which are in compact form. Moreover, a complete discussion on the requirements for the continuity of the objective corotational rates are presented. © 2008 Springer Science+Business Media B.V  

    Spin tensors associated with corotational rates and corotational integrals in continua

    , Article International Journal of Solids and Structures ; Volume 44, Issue 16 , 2007 , Pages 5222-5235 ; 00207683 (ISSN) Ghavam, K ; Naghdabadi, R ; Sharif University of Technology
    2007
    Abstract
    In many cases of constitutive modeling of continua undergoing large deformations, use of corotational rates and integrals is inevitable to avoid the effects of rigid body rotations. Making corotational rates associated with specific spin tensors is a matter of interest, which can help for a better physical interpretation of the deformation. In this paper, for a given kinematic tensor function, say G, a tensor valued function F as well as a spin tensor Ω0 is obtained in such a way that the corotational rate of F associated with the spin tensor Ω0, becomes equal to G. In other words, F is the corotational integral of G associated with the spin tensor Ω0. Here, G is decomposed additively into... 

    Thermomechanics of material growth and remodeling in uniform bodies based on the micromorphic theory

    , Article Journal of the Mechanics and Physics of Solids ; Volume 138 , 2020 Javadi, M ; Epstein, M ; Asghari, M ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Based on the micromorphic theory, a novel mathematical formulation for the mechanical modeling of material growth and remodeling processes in finite deformation is developed. These two processes have an important significance in evolution of living tissues. The presented formulation incorporates both the volumetric growth and mass flux phenomena into the modeling with the aid of the micromorphic theory's capability to include internal structures in materials. The balance equation of microinertia is presented which reveals the importance of rearrangement and alteration of microstructure in the micromorphic material growth. Within the framework of material uniformity, the evolution laws are... 

    Fracture Analysis of Graphene Using Peridynamic Theory

    , Ph.D. Dissertation Sharif University of Technology Torkaman Asadi, Mohammad Ali (Author) ; Kouchakzadeh, Mohammad Ali (Supervisor)
    Abstract
    The aim of this research is to analyze the failure and investigate crack growth in graphene using peridynamic theory. The presence of spatial partial derivatives in the equations of classical continuum mechanics has led to the fact that methods based on this theory are not valid in displacement discontinuities such as cracks. Peridynamic theory emerges as a nonlocal reformulation of mechanics, uniquely well-suited for modeling discontinuities and dynamic fractures in both continuous and discrete media. Its adaptability extends to various dimensions, encompassing phenomena at the nanoscale. In the present study, based on the ordinary state-based peridynamic theory, we investigated the... 

    Nonlinear forced vibration of strain gradient microbeams

    , Article Applied Mathematical Modelling ; Volume 37, Issue 18-19 , 1 October , 2013 , pp. 8363-8382 ; ISSN: 0307904X Vatankhah, R ; Kahrobaiyan, M. H ; Alasty, A ; Ahmadian, M. T ; Sharif University of Technology
    Abstract
    In this paper, the strain gradient theory, a non-classical continuum theory able to capture the size effect happening in micro-scale structures, is employed in order to investigate the size-dependent nonlinear forced vibration of Euler-Bernoulli microbeams. The nonlinearities are caused by mid-plane stretching and nonlinear external forces such as van-der-Waals force. The nonlinear governing equations of the microbeams are solved analytically utilizing the perturbation techniques. The primary, super-harmonic and sub-harmonic resonances of a microbeam are studied and the size-dependency of the frequency responses is assessed. The results indicate that the nonlinear forced vibration behavior... 

    Cooperativity effects of intramolecular OH...O interactions on pK a values of polyolalkyl sulfonic acids in the gas phase and solution: A density functional theory study

    , Article Journal of Physical Organic Chemistry ; Vol. 27, issue. 7 , 2014 , p. 604-612 Najdian, A ; Shakourian-Fard, M ; Fattahi, A ; Sharif University of Technology
    Abstract
    Density functional theory method and B3LYP/6-311++G(d,p) level of theory were used to determine the acidity of alkyl sulfonic acids and polyolalkyl sulfonic acids in the gas and solution (H2O, DMSO, and CH 3CN) phase. Polarized continuum model was applied to calculate pKa values of alkyl sulfonic acids and polyolalkyl sulfonic acids. A comparison between acidity of alkyl sulfonic acids and polyolalkyl sulfonic acids in the gas and solution phase indicates that the acidity strength of polyolalkyl sulfonic acids enhances with the increase of the cooperativity effect of intramolecular hydrogen bonds in polyolalkyl sulfonic acids. Natural bond orbital and quantum theory of atoms in molecules... 

    Effect of source strength on dislocation pileups in the presence of stress gradients

    , Article Philosophical Magazine ; Volume 95, Issue 20 , 2015 , Pages 2175-2197 ; 14786435 (ISSN) Zamani, Z ; Shishvan, S. S ; Assempour, A ; Sharif University of Technology
    Abstract
    The behaviour of a dislocation pileup with a finite-strength source is investigated in the presence of various stress gradients within a continuum model where a free-dislocation region exists around the source. Expressions for dislocation density and stress field within the pileup are derived for the situation where there are first and second spatial gradients in applied stress. For a pileup configuration under an applied stress, yielding occurs when the force acting on the leading dislocations at the pileup tips reaches the obstacle strength, and at the same time, it is required that the source be at the threshold stress for dislocation production. A numerical methodology is presented to... 

    Stability of C60-peapods under hydrostatic pressure

    , Article Acta Materialia ; Volume 55, Issue 16 , 2007 , Pages 5483-5488 ; 13596454 (ISSN) Najafi Sohi, A ; Naghdabadi, R ; Sharif University of Technology
    2007
    Abstract
    The stability of single-walled carbon nanopeapods under hydrostatic pressure is investigated using a continuum-based elastic shell model. The model incorporates nonbonded van der Waals interactions between the nested fullerenes and the host carbon nanotube. By deriving an explicit equation, it is shown that the critical hydrostatic pressure for the onset of structural instability of a completely packed C60@(10,10) nanopeapod is ∼1.11 GPa, while for the case of the pristine host (10,10) nanotube it is ∼1.84 GPa. Thus, it is concluded that the fullerene encapsulation weakens the host nanotube under hydrostatic pressure. In addition, it is quantitatively shown that any decrease in packing... 

    Energy pairs in the micropolar continuum

    , Article International Journal of Solids and Structures ; Volume 44, Issue 14-15 , 2007 , Pages 4810-4818 ; 00207683 (ISSN) Ramezani, S ; Naghdabadi, R ; Sharif University of Technology
    2007
    Abstract
    In this paper, the concept of energy pairs in the micropolar continuum is introduced. A brief review of the micropolar continuum theory is presented for using in the subsequent derivations. A mathematical Lagrangian strain and a wryness tensor for the micropolar continuum are introduced. Using the first law of thermodynamics and for isothermal processes, the power of deformation is obtained and the energy pairs in the Eulerian and Lagrangian descriptions are defined. Also, the micropolar stress and couple stress tensors which are energy pairs to the micropolar Lagrangian strain and wryness measures are determined. © 2006 Elsevier Ltd. All rights reserved  

    Torsional buckling of carbon nanopeapods

    , Article Carbon ; Volume 45, Issue 5 , 2007 , Pages 952-957 ; 00086223 (ISSN) Najafi Sohi, A ; Naghdabadi, R ; Sharif University of Technology
    2007
    Abstract
    Torsional buckling of carbon nanopeapods (carbon nanotubes filled with fullerenes) is studied using a continuum-based multi-layered shell model. The model takes into account non-bonded van der Waals interactions between nested fullerenes and the innermost layer of host nanotube. For nanopeapods with linearly arranged nested fullerenes, equivalent pressure distribution is proposed to model these interactions. Deriving explicit equations governing the torsional stability, it is concluded that the critical torsional load of a carbon nanopeapod is less than that of a carbon nanotube under otherwise identical geometric and mechanical conditions. Performing numerical calculations, it is also shown... 

    Analytical solution of turbulent problems using governing equation of cosserat continuum model

    , Article 2006 ASME International Mechanical Engineering Congress and Exposition, IMECE2006, Chicago, IL, 5 November 2006 through 10 November 2006 ; 2006 ; 08888116 (ISSN); 0791837904 (ISBN); 9780791837900 (ISBN) Ghasvari Jahromi, H ; Atefi, Gh ; Moosaie, A ; Hormozi, S ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2006
    Abstract
    In present paper the theory of the micropolar fluid based on a Cosserat continuum model has been applied for analysis of Couette flow and turbulent flow through rough pipes. The obtained results for the velocity field have been compared with known results from experiments done by Reichardt at Max Plank institute for fluids in Gottingen [1,2] and analytical solution of the problem from Gradient theory by alizadeh[3] for couette problem and with known results from experiments done by Nikuradse (1932).the boundary condition used here was the no slip one and Trostel's slip boundary condition[4].a good agreement between experimental results and the results of the problem for Reynolds near 18000... 

    Analytical solution of turbulent couette flow by cosserat continuum model and gradient theory

    , Article 2006 ASME Joint U.S.- European Fluids Engineering Division Summer Meeting, FEDSM2006, Miami, FL, 17 July 2006 through 20 July 2006 ; Volume 2 FORUMS , 2006 , Pages 865-869 ; 0791847500 (ISBN); 9780791847503 (ISBN) Ghasvari Jahromi, H ; Atefi, Gh ; Moosaie, A ; Hormozi, S ; Afshin, H ; Sharif University of Technology
    2006
    Abstract
    In present paper the theory of the micropolar fluid based on a Cosserat continuum model has been applied for analysis of Couette flow. The obtained results for the velocity field have been compared with known results from experiments done by Reichardt at Max Plank institute for fluids in Gottingen [1,2] and analytical solution of the problem from Gradient theory by alizadeh[3].the boundary condition used here was the no slip one and Trostel's slip boundary condition[4].a good agreement between experimental results and the results of the problem for Reynolds near 18000 has beeen found. A new dimensionless number introduced that indicates the theoretical relation between cosserat theory and... 

    Elastic Moduli Tensors, Ideal Strength, and Morphology of Stanene based on an Enhanced Continuum Model and First Principles

    , M.Sc. Thesis Sharif University of Technology Etehadieh koochak, Azadeh (Author) ; Mohammadi Shoja, Hossein (Supervisor)
    Abstract
    Nowadays, multifunctional two-dimensional (2D) nanostructured materials due to their important role in biomedical and nanotechnological developments have gained the attention of many engineers and scientists with a wide spectrum of disciplines. The present work aims to provide an accurate description of the tensile behavior (from the initial unloaded state through axial strain of about 0.25) of the planar as well as low-buckled stanene and to capture their ideal strength in armchair- and zigzag-directions. Stanene is 2D hexagonal lattice which belongs to D6 hcrystal class having a six-fold rotational symmetry. For an accurate description of anisotropic response of such hyperelastic materials... 

    Calculating the Stiffness Matrix of VACNTs Using Structural or Continuum Modelling

    , M.Sc. Thesis Sharif University of Technology Vahidmoshtagh, Alireza (Author) ; Dehghani Firouz Abadi, Ruhollah (Supervisor)
    Abstract
    The goal of this research is investigation and analysis of a surface consists of vertically aligned carbon nanotubes (VACNTs) using continuum mechanics modeling. Today these kinds of surfaces also known as the darkest material have a particular importance in industries. Knowing the properties of a material is one of the most important things in analysis and designing using that kind of material, so extraxting the stiffness matrix of a material could be a big step for starting analyzing it. In this thesis a lattice of VACNTs with two different layouts and several unique geometrics is simulated using molecular dynamics approach using the Lammps software. The general stiffness matrix of the... 

    Formulation of Geometrically Nonlinear Microbeams Based on the Second Strain Gradient Theory

    , M.Sc. Thesis Sharif University of Technology Karparvarfard, Mohammad Hassan (Author) ; Asghari, Mohsen (Supervisor) ; Vatankhah, Ramin (Supervisor)
    Abstract
    Nowadays, the usage of beam-shaped structures has widely spread in micro- and nano-electromechanical systems; consequently, scholars are extremely interested in precise modeling of static and dynamic behaviors of them. As the beams utilized in MEMS and NEMS structures have thicknesses in the order of microns and sub-microns, the experimentally validated small scale effects would be considerable in their behavior. In fact, experiments manifest that the size-dependent behavior is an intrinsic feature of materials when they are used in small-scale structures. In the classical continuum mechanics, there exists no material length scale parameter. Thus, the classical theory is unable to capture... 

    Geometrically nonlinear rectangular simply supported plates subjected to a moving mass

    , Article Acta Mechanica ; Vol. 225, issue. 2 , February , 2014 , pp. 595-608 ; ISSN: 00015970 Enshaeian, A ; Rofooei, F. R ; Sharif University of Technology
    Abstract
    The dynamic deformation of a geometrically nonlinear rectangular simply supported plate under a moving lumped mass is evaluated using mode expansion method. The governing differential equations of motion for a largely deformable rectangular plate are derived using Lagrange method based on appropriate in and out-of-plane spatial functions which satisfy the proposed boundary conditions. Although the proposed procedure is applicable for any arbitrary edge boundary conditions, only the simply supported plates are addressed in the present work. On the other hand, all inertial components of the moving mass are included in the derivation of the equations of motion. A numerical example is used to...