Loading...
Search for: concentration-ratio
0.005 seconds

    Geometric optimization of parabolic trough solar collector based on the local concentration ratio using the Monte Carlo method

    , Article Energy Conversion and Management ; Volume 175 , 2018 , Pages 278-287 ; 01968904 (ISSN) Hoseinzadeh, H ; Kasaeian, A ; Behshad Shafii, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    This research is aimed at geometric analysis of parabolic trough solar collector (PTC) in different sizes of the main components of the system. The rate of the Local Concentration Ratio (LCR) on the receiver tube and optical efficiency are two main features in geometric optimization of the parabolic trough solar collectors. In this work, parabolic trough solar collector was optimized for different sizes with three design variables: the receiver diameter, the collector aperture width and the rim angle. The method used in this research was the Monte Carlo Method (MCM) in MATLAB. The optical and geometric modeling was developed for coding in MATLAB. For the case study, a parabolic trough solar... 

    A new designed linear Fresnel lens solar concentrator based on spectral splitting for passive cooling of solar cells

    , Article Energy Conversion and Management ; Volume 230 , 2021 ; 01968904 (ISSN) Kiyaee, S ; Saboohi, Y ; Moshfegh, A. Z ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The use of solar concentrators can be an alternative for initial cost reduction in the PV systems. However, they suffer from high cell temperature that can be overcome by different active or passive cooling approaches. Spectral splitting and the elimination of high-energy solar photons are effective solutions for cell temperature reduction. In this study, we developed a Polymethyl methacrylate Spectral Splitting Fresnel Lens (SSFL) for linear concentration using a new design, which directs the desired portion of the spectrum towards the cell and diffracts the rest to eliminate the use of beam splitters or nanofluids in the spectral splitting system. Different SSFLs were considered for... 

    Room temperature synthesis of highly crystalline TiO2 nanoparticles

    , Article Materials Letters ; Volume 92 , February , 2013 , Pages 287-290 ; 0167577X (ISSN) Sasani Ghamsari, M ; Radiman, S ; Azmi Abdul Hamid, M ; Mahshid, S ; Rahmani, S ; Sharif University of Technology
    2013
    Abstract
    Hydrolysis of titanium isopropoxide alcoholic solution has been used to prepare the crystallized TiO2 nanoparticles at low temperature. Concentration ratio was used to control the pathway of sol-gel process and change the physical characteristics of TiO2 nanopowders. The crystallinity, morphology and size of aged TiO2 nanopowders were studied by X-ray diffraction and Scanning Electron Microscopy (SEM). FTIR and, Thermo-Gravimetric (TG) analysis were used to identify the functional groups and thermal behavior of prepared samples. Experimental results have shown that high crystalline TiO2 nanomaterial with anatase polymorph can be obtained at room temperature. It has been found that the... 

    Optical and thermal analysis of a parabolic trough solar collector for production of thermal energy in different climates in Iran with comparison between the conventional nanofluids

    , Article Journal of Cleaner Production ; Volume 175 , 2018 , Pages 294-313 ; 09596526 (ISSN) Marefati, M ; Mehrpooya, M ; Shafii, M. B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Optical and thermal analysis of the most well-known solar concentrator system; parabolic trough collector (PTC) are investigated and analyzed. To evaluate performance of the PTC, four cities of Iran with different weather conditions are chosen as case studies. Effective parameters such as concentration ratio, incident angle correction factor, collector mass flow rate are considered. The main objective of this work is evaluation of the solar energy potential using PTC in under consideration cities with different climates. Numerical modeling of the analysis is done using MATLAB software. Simulation results shows that Shiraz, with an average annual thermal efficiency of 13.91% and annual useful...