Loading...
Search for: concave-surface
0.009 seconds

    Numerical investigation of wall curvature effects on heat transfer and film cooling effectiveness

    , Article Heat Transfer Research ; Volume 47, Issue 6 , 2016 , Pages 559-574 ; 10642285 (ISSN) Shalchi Tabrizi, A ; Taiebi Rahni, M ; Xie, G ; Asadi, M ; Sharif University of Technology
    Begell House Inc  2016
    Abstract
    In this research, the problems of adiabatic film-cooling the flat, convex, and concave surfaces are investigated numerically. Two different radii of curvature and one row of vertical injection holes are considered. The Navier-Stokes equations are solved using a fine nonuniform multiblock staggered curvilinear grid and the SIMPLE-based finite volume method. The blowing rates are 0.5 and 1.0 and the mainstream Reynolds number is 10,000. The obtained results indicated that at a low blowing ratio, the cooling effectiveness enhances over the convex surface and reduces over the concave surface compared to the flat surface case. In comparison with the low blowing ratio, the curvature effects at a... 

    Rebounding suppression of droplet impact on hot surfaces: Effect of surface temperature and concaveness

    , Article Soft Matter ; Volume 15, Issue 5 , 2019 , Pages 1017-1026 ; 1744683X (ISSN) Jowkar, S ; Morad, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    When a droplet impinges on a hot surface it is crucial to increase the contact time or decrease the rebounding distance if the heat transfer between the droplet and the surface is important. This will be more sensitive when the temperature regime is above the Leidenfrost values. The focus of the present experimental study is on the maximum height of drop bouncing after impinging on flat and semi-cylindrical concave surfaces, in particular in terms of surface temperature. It is shown that the behavior of the lamella during the spreading to its maximum diameter has a considerable impact on the maximum height of the drop bouncing. For different impact Weber numbers the map of thermal versus... 

    Rebounding suppression of droplet impact on hot surfaces: Effect of surface temperature and concaveness

    , Article Soft Matter ; Volume 15, Issue 5 , 2019 , Pages 1017-1026 ; 1744683X (ISSN) Jowkar, S ; Morad, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2019
    Abstract
    When a droplet impinges on a hot surface it is crucial to increase the contact time or decrease the rebounding distance if the heat transfer between the droplet and the surface is important. This will be more sensitive when the temperature regime is above the Leidenfrost values. The focus of the present experimental study is on the maximum height of drop bouncing after impinging on flat and semi-cylindrical concave surfaces, in particular in terms of surface temperature. It is shown that the behavior of the lamella during the spreading to its maximum diameter has a considerable impact on the maximum height of the drop bouncing. For different impact Weber numbers the map of thermal versus...