Loading...
Search for: computational-framework
0.009 seconds

    Development of a virtual cell model to predict cell response to substrate topography

    , Article ACS Nano ; Volume 11, Issue 9 , 2017 , Pages 9084-9092 ; 19360851 (ISSN) Heydari, T ; Heidari, M ; Mashinchian, O ; Wojcik, M ; Xu, K ; Dalby, M. J ; Mahmoudi, M ; Ejtehadi, M. R ; Sharif University of Technology
    Abstract
    Cells can sense and respond to changes in the topographical, chemical, and mechanical information in their environment. Engineered substrates are increasingly being developed that exploit these physical attributes to direct cell responses (most notably mesenchymal stem cells) and therefore control cell behavior toward desired applications. However, there are very few methods available for robust and accurate modeling that can predict cell behavior prior to experimental evaluations, and this typically means that many cell test iterations are needed to identify best material features. Here, we developed a unifying computational framework to create a multicomponent cell model, called the... 

    Earthquake vulnerability assessment for urban areas using an ann and hybrid swot-qspm model

    , Article Remote Sensing ; Volume 13, Issue 22 , 2021 ; 20724292 (ISSN) Alizadeh, M ; Zabihi, H ; Rezaie, F ; Asadzadeh, A ; Wolf, I. D ; Langat, P. K ; Khosravi, I ; Beiranvand Pour, A ; Mohammad Nataj, M ; Pradhan, B ; Sharif University of Technology
    MDPI  2021
    Abstract
    Tabriz city in NW Iran is a seismic-prone province with recurring devastating earthquakes that have resulted in heavy casualties and damages. This research developed a new computational framework to investigate four main dimensions of vulnerability (environmental, social, economic and physical). An Artificial Neural Network (ANN) Model and a SWOT-Quantitative Strategic Planning Matrix (QSPM) were applied. Firstly, a literature review was performed to explore indicators with significant impact on aforementioned dimensions of vulnerability to earthquakes. Next, the twenty identified indicators were analyzed in ArcGIS, a geographic information system (GIS) software, to map earthquake... 

    Earthquake vulnerability assessment for urban areas using an ann and hybrid swot-qspm model

    , Article Remote Sensing ; Volume 13, Issue 22 , 2021 ; 20724292 (ISSN) Alizadeh, M ; Zabihi, H ; Rezaie, F ; Asadzadeh, A ; Wolf, I. D ; Langat, P. K ; Khosravi, I ; Beiranvand Pour, A ; Nataj, M. M ; Pradhan, B ; Sharif University of Technology
    MDPI  2021
    Abstract
    Tabriz city in NW Iran is a seismic-prone province with recurring devastating earthquakes that have resulted in heavy casualties and damages. This research developed a new computational framework to investigate four main dimensions of vulnerability (environmental, social, economic and physical). An Artificial Neural Network (ANN) Model and a SWOT-Quantitative Strategic Planning Matrix (QSPM) were applied. Firstly, a literature review was performed to explore indicators with significant impact on aforementioned dimensions of vulnerability to earthquakes. Next, the twenty identified indicators were analyzed in ArcGIS, a geographic information system (GIS) software, to map earthquake... 

    A cloud computing framework on demand side management game in smart energy hubs

    , Article International Journal of Electrical Power and Energy Systems ; Volume 64 , January , 2015 , Pages 1007-1016 ; 01420615 (ISSN) Sheikhi, A ; Rayati, M ; Bahrami, S ; Ranjbar, A. M ; Sattari, S ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    The presence of energy hubs in the future vision of energy networks creates an opportunity for electrical engineers to move toward more efficient energy systems. At the same time, it is envisioned that smart grid can cover the natural gas network in the near future. This paper modifies the classic Energy Hub model to present an upgraded model in the smart environment entitling "Smart Energy Hub". Supporting real time, two-way communication between utility companies and smart energy hubs, and allowing intelligent infrastructures at both ends to manage power consumption necessitates large-scale real-time computing capabilities to handle the communication and the storage of huge transferable... 

    A fundamental tradeoff between computation and communication in distributed computing

    , Article IEEE Transactions on Information Theory ; 2017 ; 00189448 (ISSN) Li, S ; Maddah Ali, M. A ; Yu, Q ; Avestimehr, A. S ; Sharif University of Technology
    Abstract
    How can we optimally trade extra computing power to reduce the communication load in distributed computing? We answer this question by characterizing a fundamental tradeoff between computation and communication in distributed computing, i.e., the two are inversely proportional to each other. More specifically, a general distributed computing framework, motivated by commonly used structures like MapReduce, is considered, where the overall computation is decomposed into computing a set of “Map” and “Reduce” functions distributedly across multiple computing nodes. A coded scheme, named “Coded Distributed Computing” (CDC), is proposed to demonstrate that increasing the computation load of the... 

    A fundamental tradeoff between computation and communication in distributed computing

    , Article IEEE Transactions on Information Theory ; Volume 64, Issue 1 , 2018 , Pages 109-128 ; 00189448 (ISSN) Li, S ; Maddah Ali, M. A ; Yu, Q ; Salman Avestimehr, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    How can we optimally trade extra computing power to reduce the communication load in distributed computing? We answer this question by characterizing a fundamental tradeoff between computation and communication in distributed computing, i.e., the two are inversely proportional to each other. More specifically, a general distributed computing framework, motivated by commonly used structures like MapReduce, is considered, where the overall computation is decomposed into computing a set of “Map” and “Reduce” functions distributedly across multiple computing nodes. A coded scheme, named “coded distributed computing” (CDC), is proposed to demonstrate that increasing the computation load of the... 

    An X-FEM investigation of hydro-fracture evolution in naturally-layered domains

    , Article Engineering Fracture Mechanics ; Volume 191 , March , 2018 , Pages 187-204 ; 00137944 (ISSN) Vahab, M ; Akhondzadeh, S ; Khoei, A. R ; Khalili, N ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this paper, a computational model is developed for the simulation of hydro-fracture growth in naturally layered impervious media using the extended finite element method (X-FEM). The equilibrium equation of the bulk is solved in conjunction with the hydro-fracture inflow and continuity equations using the staggered Newton method. The hydro-fracture inflow is governed by the lubrication theory, where the permeability of the fracture is incorporated by taking advantage of the cubic law. The Eigen-function expansion method is utilised in order to develop enrichment functions suited for the asymptotic stress field in the vicinity of the singular points. An energy release rate-based criterion... 

    Evaluation of liver shape approximation and characterization

    , Article IIH-MSP 2009 - 2009 5th International Conference on Intelligent Information Hiding and Multimedia Signal Processing, Kyoto, 12 September 2009 through 14 September 2009 ; 2009 , Pages 1297-1300 ; 9780769537627 (ISBN) Babapour Mofrad, F ; Aghaeizadeh Zoroofi , R ; Chen, Y. W ; Abbaspour Tehrani Fard, A ; Sato, Y ; Furukawa, A ; K.U.A.S.; RITSUMEIKAN; IEEE Computational Intelligence Society ; Sharif University of Technology
    2009
    Abstract
    A computational framework is presented for 3-D liver shape approximation and characterization in order to determine the accuracy of shape reconstruction via Spherical Harmonics expansion. Spherical Harmonics is a powerful mathematical tool for expanding the shape. But in medical domain, livers have very variation geometry, in shape, size, and volume. In this regards, we evaluated and optimized the Spherical Harmonics to create 3-D parametric surface of the liver from Computed Tomography (CT) imaging system which may useful for Shape modeling, surface representation, physical measurement of objects and mathematical model. We select randomly 5 livers from more 100 dataset. Mean Hausdorff... 

    An enriched-finite element technique for numerical simulation of hydro-fracture evolution in naturally-layered formations

    , Article 6th ECCOMAS European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th ECCOMAS European Conference on Computational Fluid Dynamics, ECFD 2018, 11 June 2018 through 15 June 2018 ; 2020 , Pages 1685-1696 Vahab, M ; Akhondzadeh, S. H ; Khoei, A. R ; Khalili, N ; Sharif University of Technology
    International Centre for Numerical Methods in Engineering, CIMNE  2020
    Abstract
    In this paper, a computational model is developed for the simulation of hydro-fracture growth in naturally layered impervious media using the extended finite element method (X-FEM). The equilibrium equation of the bulk is solved in conjunction with the hydro-fracture inflow and continuity equations using the staggered Newton method. The hydro-fracture inflow is modeled by using the lubrication theory, where the permeability of the fracture is incorporated by taking advantage of the cubic law. The Eigen-function expansion method is utilized in order to develop enrichment functions suited for the asymptotic stress field in the vicinity of the singular points. An energy release rate-based... 

    Chemo-mechanistic multi-scale model of a three-dimensional tumor microenvironment to quantify the chemotherapy response of cancer

    , Article Biotechnology and Bioengineering ; Volume 118, Issue 10 , 2021 , Pages 3871-3887 ; 00063592 (ISSN) Nikmaneshi, M. R ; Firoozabadi, B ; Mozafari, A ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Exploring efficient chemotherapy would benefit from a deeper understanding of the tumor microenvironment (TME) and its role in tumor progression. As in vivo experimental methods are unable to isolate or control individual factors of the TME, and in vitro models often cannot include all the contributing factors, some questions are best addressed with mathematical models of systems biology. In this study, we establish a multi-scale mathematical model of the TME to simulate three-dimensional tumor growth and angiogenesis and then implement the model for an array of chemotherapy approaches to elucidate the effect of TME conditions and drug scheduling on controlling tumor progression. The... 

    Mechanical properties of ester- and ether-DPhPC bilayers: A molecular dynamics study

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 117 , 2021 ; 17516161 (ISSN) Rasouli, A ; Jamali, Y ; Tajkhorshid, E ; Bavi, O ; Pishkenari, H. N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In addition to its biological importance, DPhPC lipid bilayers are widely used in droplet bilayers, study of integral membrane proteins, drug delivery systems as well as patch-clamp electrophysiology of ion channels, yet their mechanical properties are not fully measured. Herein, we examined the effect of the ether linkage on the mechanical properties of ester- and ether-DPhPC lipid bilayers using all-atom molecular dynamics simulation. The values of area per lipid, thickness, intrinsic lateral pressure profile, order parameter, and elasticity moduli were estimated using various computational frameworks and were compared with available experimental values. Overall, a good agreement was... 

    Prediction of shape and internal structure of the proximal femur using a modified level set method for structural topology optimisation

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 15, Issue 8 , 2012 , Pages 835-844 ; 10255842 (ISSN) Bahari, M. K ; Farahmand, F ; Rouhi, G ; Movahhedy, M. R ; Sharif University of Technology
    Abstract
    A computational framework was developed to simulate the bone remodelling process as a structural topology optimisation problem. The mathematical formulation of the Level Set technique was extended and then implemented into a coronal plane model of the proximal femur to simulate the remodelling of internal structure and external geometry of bone into the optimal state. Results indicated that the proposed approach could reasonably mimic the major geometrical and material features of the natural bone. Simulation of the internal bone remodelling on the typical gross shape of the proximal femur, resulted in a density distribution pattern with good consistency with that of the natural bone. When...