Loading...
Search for: commercial-software
0.005 seconds
Total 21 records

    A numerical investigation to study effects of a savonius rotor's plate shape on its optimum overlap ratio

    , Article ASME 2012 Gas Turbine India Conference, GTINDIA 2012, 1 December 2012 through 1 December 2012 ; December , 2012 , Pages 253-258 ; 9780791845165 (ISBN) Abbaszadeh, M ; Bagherzadeh, F ; Iravani, M ; Sharif University of Technology
    2012
    Abstract
    Present study is aimed to investigate the relationship between blade shape of Savonius rotor and its optimum overlap, an important parameter that can improve the rotor's performance superbly. To set a relation between rotor's shape and its overlap, a new parameter called "trailing angle" was introduced in this study and by a novel design method, several models were designed to represent a wide range of trailing angles. The investigation has been carried out by using Reynolds Stress Method (RSM) through ANSYS Fluent commercial software package. The application of the method was validated by comparing the results of a conventional model with experimental data acquired from one of the... 

    Progressive bearing failure modeling of composites with double-bolted joints at mesoscale level

    , Article Archive of Applied Mechanics ; Vol. 84, issue. 5 , May , 2014 , p. 657-669 ; 09391533 Veisi, H ; Hosseini Kordkheili, S. A ; Toozandehjani, H ; Sharif University of Technology
    Abstract
    Both numerical and experimental researches are carried out to study the strength of the composite double-bolted joints and the bearing damage propagation. A mesoscale level progressive damage model along with analytical formulation is used to predict the bearing failure of carbon-epoxy composite plates. This damage model is introduced as a user material subroutine in the commercial software ABAQUS, and the maximum failure load is calculated. In order to validate the numerical results, experimental tests are also conducted in which comparison between the results shows an excellent agreement. Furthermore, the effects of the bolt distances on the maximum failure load are studied. The results... 

    A novel approach to design reversible counter rotating propeller fans

    , Article ASME 2012 Gas Turbine India Conference, GTINDIA 2012, 1 December 2012 through 1 December 2012 ; December , 2012 , Pages 265-270 ; 9780791845165 (ISBN) Abbaszadeh, M ; Parizi, P. N ; Taheri, R ; Sharif University of Technology
    2012
    Abstract
    Because of their high performance and unique abilities like producing none-rotating wake, Counter Rotating Propellers (C.R.P.) are being used in many advanced propulsion or ventilation systems. But due to complicated design procedure of C.R.P. fans up to now it was not possible to apply the concept in reversible systems. For the first time in this research, a new method presented to design a reversible counter rotating propeller system. This method is based on designing a basic C.R.P. by a reliable edition of blade element theory to achieve maximum performance in main rotating course and then to optimize it in order to have almost same performance in reverse rotating course. After expressing... 

    A numerical investigation on effects of the gap between plates of Savonius vertical axis wind turbines with different shapes on their performance

    , Article ASME 2012 Gas Turbine India Conference, GTINDIA 2012, 1 December 2012 through 1 December 2012 ; December , 2012 , Pages 259-264 ; 9780791845165 (ISBN) Abbaszadeh, M ; Doroodian, F ; Sharif University of Technology
    2012
    Abstract
    Present study introduces the vertical gap between the blades of a Savonius rotor's blades as a parameter that can enhance performance of the rotor. To provide comprehensive concept about application of gap between blades, two different models were tested in different working conditions and working regimes. The study completed by using R.S.M. turbulence model through ANSYS Fluent commercial software package. Utilization of the method was validated by comparing results of a conventional model with experimental data from one of the references. Results of the study proved that application of a proper gap between blades can improve rotor's moment coefficient by 20 percent; however, the amount of... 

    MILP model for integrated expansion planning of multi-carrier active energy systems

    , Article IET Generation, Transmission and Distribution ; Volume 13, Issue 7 , 2019 , Pages 1177-1189 ; 17518687 (ISSN) Ghasemi, H ; Aghaei, J ; Gharehpetian, G. B ; Safdarian, A ; Sharif University of Technology
    Institution of Engineering and Technology  2019
    Abstract
    In growing economic energy systems, the interdependency of various energy infrastructures has led to a change in countries' policies in their expansion planning of energy networks. In this study, a mixed-integer non-linear programming (MINLP) model is proposed for expansion planning of the multi-carrier systems including electricity and gas distribution networks. The optimal planning determines the best location, time, and alternative for network assets in order to minimise investment costs and reduce losses. Also, as another distinctive feature of this study, given the integration of electricity and gas distribution networks and the complexity of the problem, a new MILP model using... 

    An investigation of fracture geometry in hydraulic fracturing on a gas reservoir well production enhancement

    , Article Petroleum Science and Technology ; Vol. 32, issue. 2 , 2014 , pp. 150-157 ; ISSN: 10916466 Baghbanan, A. R ; Parvazdavani, M ; Abbasi, S ; Rahnama, A. R ; Sharif University of Technology
    Abstract
    Utilizing improved production methods have been always challenging in upstream industries. Nowadays, hydraulic fracturing is one of the most prestigious mechanical methods. Application of this method is in wells with low productivity index. Hydraulic fracturing efficiency depends on various factors, such as fracture geometry, fluid composition, and stress distribution. But some of them would be ignored, such as fracture geometry, which is neglected due to nongravity and lack of investigation of DFN statistical population assumption. The authors develop a more comprehensive methodology based on fracture geometry and aim to model one of the gas reservoirs in Iran that is naturally fractured by... 

    CFD Simulation of hydrodynamic of a bubble column reactor operating in churn-turbulent regime and effect of gas inlet distribution on system characteristics

    , Article International Journal of Chemical Reactor Engineering ; Volume 14, Issue 1 , 2016 , Pages 213-224 ; 15426580 (ISSN) Azimi Yancheshme, A ; Zarkesh, J ; Rashtchian, D ; Anvari, A ; Sharif University of Technology
    Walter de Gruyter GmbH 
    Abstract
    CFD simulation of cylindrical bubble column including air as dispersed phase and water as continuous phase operating in churn-turbulent flow regime with diameter of 0.49 m, height of 3.6 m and gas superficial velocity of 0.14 m/s have been conducted. All simulations have been carried out in a 2D axisymmetric, unsteady and Euler/Euler framework with the aid of commercial software FLUENT v. 14.5. Simulations were validated by our experimental results through residence time distribution (RTD) data. Effect of bubble size distribution at inlet on column hydrodynamic was investigated and results clearly showed that equilibrium bubble size distribution in most parts of column is independent of... 

    How local slopes stabilize passive bipedal locomotion?

    , Article Mechanism and Machine Theory ; Volume 100 , 2016 , Pages 63-82 ; 0094114X (ISSN) Tehrani Safa, A ; Mohammadi, S ; Hajmiri, S. E ; Naraghi, M ; Alasty, A ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    By employing a few simple models of passive dynamic walking mechanism, we have shown the possibility of extending the boundaries of the maximum stable speed of these autonomous robots merely by changing their terrain. The replaced terrain consists of a series of parallel local slopes and is recognized as a general form of a ramp-stair surface. Although here, the mechanism of stabilization of the unstable locomotion patterns is not clearly known, the technique is quite simple and works effectively. The merit to the method over other strategies, could be described in two separate aspects: First, it is still completely passive; so we do not need any external energy to control the robot. Second,... 

    Finite element modelling and seismic behaviour of integral abutment bridges considering soil–structure interaction

    , Article European Journal of Environmental and Civil Engineering ; 2018 , Pages 1-20 ; 19648189 (ISSN) Mahjoubi, S ; Maleki, S ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Abstract
    A comprehensive non-linear finite element (FE) model of integral abutment bridges (IABs) is presented to facilitate the analysis of such bridges using commercial software, especially under seismic loading. The presented model is capable of capturing non-linearity in both the structure and soil, in addition to considering far-field soil response. The model is simple enough to be used for practical purposes. On the other hand, many aspects of seismic behaviour of IABs are unclear, due to complicated soil–structure interaction. Using the presented model, a parametric study is performed to identify the effects of bridge length, abutment type and soil type on seismic behaviour of IABs. Non-linear... 

    Finite element modelling and seismic behaviour of integral abutment bridges considering soil–structure interaction

    , Article European Journal of Environmental and Civil Engineering ; Volume 24, Issue 6 , January , 2020 , Pages 767-786 Mahjoubi, S ; Maleki, S ; Sharif University of Technology
    Taylor and Francis Ltd  2020
    Abstract
    A comprehensive non-linear finite element (FE) model of integral abutment bridges (IABs) is presented to facilitate the analysis of such bridges using commercial software, especially under seismic loading. The presented model is capable of capturing non-linearity in both the structure and soil, in addition to considering far-field soil response. The model is simple enough to be used for practical purposes. On the other hand, many aspects of seismic behaviour of IABs are unclear, due to complicated soil–structure interaction. Using the presented model, a parametric study is performed to identify the effects of bridge length, abutment type and soil type on seismic behaviour of IABs. Non-linear... 

    Application of inverse finite element method in tube hydroforming modeling

    , Article Applied Mathematical Modelling ; Volume 37, Issue 8 , 2013 , Pages 5913-5926 ; 0307904X (ISSN) Einolghozati, M ; Shirin, M. B ; Assempour, A ; Sharif University of Technology
    2013
    Abstract
    In tube hydroforming, the inverse finite element method (IFEM) has been used for estimating the initial length of tube, axial feeding and fluid pressure. The already developed IFEM algorithm used in this work is based on the total deformation theory of plasticity. Although the nature of tube hydroforming is three-dimensional deformation, in this paper a modeling technique has been used to perform the computations in two-dimensional space. Therefore, compared with conventional forward finite element methods, the present computations are quite fast with no trial and error process. In addition, the solution provides all the components of strain. Using the forming limit diagram (FLD), the... 

    A method for simulation of vapour cloud explosions based on computational fluid dynamics (CFD)

    , Article Journal of Loss Prevention in the Process Industries ; Volume 24, Issue 5 , 2011 , Pages 638-647 ; 09504230 (ISSN) Tauseef, S. M ; Rashtchian, D ; Abbasi, T ; Abbasi, S.A ; Sharif University of Technology
    Abstract
    The effectiveness of the application of CFD to vapour cloud explosion (VCE) modelling depends on the accuracy with which geometrical details of the obstacles likely to be encountered by the vapour cloud are represented and the correctness with which turbulence is predicted. This is because the severity of a VCE strongly depends on the types of obstacles encountered by the cloud undergoing combustion; the turbulence generated by the obstacles influences flame speed and feeds the process of explosion through enhanced mixing of fuel and oxidant. In this paper a CFD-based method is proposed on the basis of the author's finding that among the various models available for assessing turbulence, the... 

    Effect of fracture geometry on improving hydrocarbon production in fractured gas reservoirs by hydraulic fracturing

    , Article 73rd European Association of Geoscientists and Engineers Conference and Exhibition 2011: Unconventional Resources and the Role of Technology. Incorporating SPE EUROPEC 2011 ; Volume 7 , 2011 , Pages 5647-5651 ; 9781617829666 (ISBN) Parvazdavani, M ; Danaei, S ; Sharif University of Technology
    2011
    Abstract
    hydraulic fracturing is one of the most prestigious mechanical methods which used as a facile production rate improvement method. Application of this method is in wells with low productivity index. Hydraulic fracturing efficiency depends on various factors, like fracture geometry, fluid composition and stress distribution. But some of them would be ignored. Such as fracture geometry which is neglected due to non-gravity and lack of investigation of DFN statistical population assumption. In this paper we develop a more comprehensive methodology based on fracture geometry, we aim to model one of the gas reservoirs which is naturally fractured, by using well-known commercial software. Based on... 

    Input impedance and radiation pattern of a resonant dipole embedded in a two-dimensional periodic leaky-wave structure

    , Article IET Microwaves, Antennas and Propagation ; Volume 9, Issue 14 , 2015 , Pages 1567-1573 ; 17518725 (ISSN) Bakhtafrouz, A ; Borji, A ; Sharif University of Technology
    Institution of Engineering and Technology  2015
    Abstract
    Array scanning method (ASM) is employed to study the input impedance and radiation pattern of a two-dimensional periodic leaky-wave antenna (LWA). The antenna consists of a narrow horizontal strip dipole of arbitrary length underneath a two-dimensional (2D) periodic screen of metallic patches, which acts as a partially reflective surface (PRS), and backed by a ground plane. First, the Green's function in the presence of the 2D array of metallic patches is calculated by means of the ASM and then the current distribution and input impedance of the source dipole are calculated through the electric field integral equation and method of moments. The far-field pattern is computed using the... 

    Analysis of temperature distribution over a gas turbine shaft exposed to a swirl combustor flue

    , Article 2010 14th International Heat Transfer Conference, IHTC 14 ; Volume 5 , 2010 , Pages 183-190 ; 9780791849408 (ISBN) Aghakashi, V ; Saidi, M. H ; Ghafourian, A ; Mozafari, A. A ; Sharif University of Technology
    2010
    Abstract
    Gas turbine shaft is generally exposed to high temperature gases and may seriously be affected and overheated due to temperature fluctuations in the combustion chamber. Considering vortex flow in the combustion chamber, it may increase the heat release rate and combustion efficiency and also control location of energy release. However, this may result in excess temperature on the combustor equipments and gas turbine shaft. Vortex flow in the vortex engine which is created by the geometry of combustion chamber and conditions of flow field is a bidirectional swirl flow that maintains the chamber wall cool. In this study a new gas turbine combustion chamber implementing a liner around the shaft... 

    Optimization of composite patch repair for inclined crack on aluminum plate using genetic algorithm

    , Article 30th Congress of the International Council of the Aeronautical Sciences, ICAS 2016, 25 September 2016 through 30 September 2016 ; 2016 ; 9783932182853 (ISBN) Talebi, B ; Abedian, A ; Firooz, S ; Sharif University of Technology
    International Council of the Aeronautical Sciences  2016
    Abstract
    In this study, a composite patch repair will be designed for an aluminum plate with a central crack placed at 45 degrees to the applied unidirectional tensile load carried by the plate. In this state, the condition of loading is mixed mode. In the first step, behavior of the crack repaired by the composite patch under the applied tensile load is simulated by using ABAQUS commercial software. The crack growth process is modeled with the extended finite element method (XFEM) and the cohesive zone model (CZM) is used to model any damage progression in the adhesive of the composite patch repair. The shape of the five layer composite patch is assumed to be elliptical. For design optimization, the... 

    Effects of boundary layer control method on hydrodynamic characteristics and tip vortex creation of a hydrofoil

    , Article Polish Maritime Research ; Volume 24, Issue 2 , 2017 , Pages 27-39 ; 12332585 (ISSN) Ghadimi, P ; Tanha, A ; Kourabbasloo, N. N ; Tavakoli, S ; Sharif University of Technology
    De Gruyter Open Ltd  2017
    Abstract
    There is currently a significant focus on using boundary layer control (BLC) approach for controlling the flow around bodies, especially the foil sections. In marine engineering this is done with the hope of increasing the lift - to - drag ratio and efficiency of the hydrofoils. In this paper, effects of the method on hydrodynamic characteristics and tip vortex formation of a hydrofoil are studied. Steady water injection at the tip of the hydrofoil is simulated in different conditions by using ANSYS-CFX commercial software. Validity of the proposed simulations is verified by comparing the obtained results against available experimental data. Effects of the injection on the lift, drag, and... 

    Two-stage stochastic programming for the railroad blocking problem with uncertain demand and supply resources

    , Article Computers and Industrial Engineering ; Volume 106 , 2017 , Pages 275-286 ; 03608352 (ISSN) Mohammad Hasany, R ; Shafahi, Y ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The railroad blocking problem is classified in the tactical level of freight rail transportation problems. The objective of this problem is to determine the optimal paths for each shipment such that the railway limitations are satisfied. In this problem, the quantities of both demand and supply resource indicators are often assumed to be certain and known, but because a blocking solution is designed for a relatively long period of time, this assumption is not reasonable. In this paper, we have developed a two-stage stochastic program for this problem to consider the uncertainty inherent in demand and supply resource indicators. Due to the size and complexity of the stochastic program and the... 

    Conceptual arrangement and basic design of drinking water reverse osmosis desalination plants

    , Article International Journal of Environmental Science and Technology ; Volume 18, Issue 12 , 2021 , Pages 4019-4036 ; 17351472 (ISSN) Khodabandehloo, M ; Farhadi, F ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    To propose a conceptual arrangement of reverse osmosis desalination plants, four comprehensive decision algorithms and a software are developed. Typically, commercial software predict the performance of the reverse osmosis membranes based on their pre-determined configuration; however, the developed decision algorithms and the developed software in this study have the capability of introducing the conceptual arrangement of pretreatment units, reverse osmosis membranes, and energy recovery devices for both seawater and brackish water reverse osmosis plants. To perform a comprehensive study, alongside the developed software and the decision algorithms, both design considerations of the... 

    Analysis of well testing results for single phase flow in reservoirs with percolation structure

    , Article Oil and Gas Science and Technology ; Volume 76 , 2021 ; 12944475 (ISSN) Shahrian, E ; Masihi, M ; Sharif University of Technology
    Editions Technip  2021
    Abstract
    Constructing an accurate geological model of the reservoir is a preliminary to make any reliable prediction of a reservoir's performance. Afterward, one needs to simulate the flow to predict the reservoir's dynamic behaviour. This process usually is associated with high computational costs. Therefore, alternative methods such as the percolation approach for rapid estimation of reservoir efficiency are quite desirable. This study tries to address the Well Testing (WT) interpretation of heterogeneous reservoirs, constructed from two extreme permeabilities, 0 and K. In particular, we simulated a drawdown test on typical site percolation mediums, occupied to fraction "p"at a constant rate Q/h,...