Loading...
Search for: colorimetric-detection
0.006 seconds

    A Visual Colorimetric Probe for Naked-Eye Detection of Pamidronate Disodium in Human Plasma Based on Aggregation of Citrate-Capped Gold Nanoparticles

    , Article Plasmonics ; Volume 10, Issue 4 , 2015 , Pages 971-978 ; 15571955 (ISSN) Hormozi Nezhad, M. R ; Abbasi-Moayed, S ; Sharif University of Technology
    Springer New York LLC  2015
    Abstract
    Herein, a sensitive, simple, and rapid colorimetric assay for the detection of pamidronate disodium was developed based on the aggregation of citrate-capped gold nanoparticles (AuNPs). This was exploited from the affinity of electron-rich atoms toward the surface of AuNPs, resulting in the aggregation of AuNPs through intermolecular hydrogen bonding interactions. As a result of aggregation under optimum conditions ([NaCl] = 25 mM, [AuNPs] = 3.3 nM and pH 7.0), the color of AuNPs was changed from red to blue and the plasmon band of AuNPs around 520 was decreased along with the formation of a new peak at a longer wavelength in the approximate range of 600 to 700 nm. The intensity ratios of... 

    A colorimetric assay for d-Penicillamine in urine and plasma samples based on the aggregation of gold nanoparticles

    , Article Journal of the Iranian Chemical Society ; Vol. 11, issue. 5 , Dec , 2014 , p. 1249-1255 Hormozi-Nezhad, M. R ; Azargun, M ; Fahimi-Kashani, N ; Sharif University of Technology
    Abstract
    We report herein the development of a highly sensitive colorimetric method for detection of d-Penicillamine using citrate-capped gold nanoparticles (AuNPs). This assay relies upon the distance-dependent of gold nanoparticles surface plasmon resonance band of gold nanoparticles. By replacing the thiol-containing chelator drug, d-Penicillamine, with citrate on the gold nanoparticles surface, a new peak appearing at a longer wavelength intensifies and shifts further to the red from the original peak position due to aggregation of gold nanoparticles which depends on ionic strength, gold nanoparticles and d-Penicillamine concentration. During this process, the plasmon band at 521 nm decreases... 

    Determination of Hydrazine and Phenylhydrazine Based on Formation of Gold Nanoparticles Stabilized with Non-ionic Surfactants

    , M.Sc. Thesis Sharif University of Technology Karami, Pari (Author) ; Hormozi Nezhad, Mohammad Reza (Supervisor)
    Abstract
    A simple and effective procedure is proposed for colorimetric detection of hydrazine and phenylhydrazine. It was found that the reduction of AuCl4- to gold nanoparticles (Au-NPs) by these compunds in the presence of Tween-20 as a stabilizing agent produced very intense surface plasmon resonance peak of Au-NPs. The plasmon absorbance of the Au-NPs allows the quantitative spectrophotometric detection of the hydrazine and phenylhydrazine. The calibration curves derived from the changes in absorbance at λ = 530 and λ = 550 nm for hydrazine and phenylhydrazine, respectively were linear with concentration of hydrazine and phenylhydrazine in the range of 1.0×10-6- 2.0×10-4 M, 5×10-6 - 4×10-4 M,... 

    A sensitive and selective colorimetric method for detection of copper ions based on anti-aggregation of unmodified gold nanoparticles

    , Article Talanta ; Vol. 129, issue , 2014 , pp. 227-232 ; ISSN: 00399140 Hormozi-Nezhad, M. R ; Abbasi-Moayed, S ; Sharif University of Technology
    Abstract
    A highly sensitive and selective colorimetric method for detection of copper ions, based on anti-aggregation of D-penicillamine (D-PC) induced aggregated gold nanoparticles (AuNPs) was developed. Copper ions can hinder the aggregation of AuNPs induced by D-PC, through formation of mixed-valence complex with D-PC that is a selective copper chelator. In the presence of a fixed amount of D-PC, the aggregation of AuNPs decreases with increasing concentrations of Cu2+ along with a color change from blue to red in AuNPs solution and an increase in the absorption ratio (A520/A 650). Under the optimum experimental conditions (pH 7, [AuNPs] =3.0 nmol L-1 and [NaCl]=25 mmol L-1), a linear calibration... 

    Colorimetric detection of glutathione based on transverse overgrowth of high aspect ratio gold nanorods investigated by MCR-ALS

    , Article RSC Advances ; Volume 5, Issue 101 , 2015 , Pages 82906-82915 ; 20462069 (ISSN) Fahimi Kashani, N ; Shadabipour, P ; Hormozi-Nezhad, M. R ; Sharif University of Technology
    Royal Society of Chemistry  2015
    Abstract
    In this paper, we present a simple platform for colorimetric detection of glutathione using gold nanorods (AR ∼ 6.5 ± 0.2) as a plasmonic sensor. The functional mechanism of the sensor is based on shifts of longitudinal plasmon resonance during selective transverse overgrowth induced by preferential binding of glutathione at the nanorod tips. Under the optimum conditions, a calibration curve showed two linear regimes at the range of 50 nM to 20 μM of glutathione with a detection limit as low as 40 nM. The nanosensor maintains relatively high selectivity for determination of glutathione in the presence of several other amino acids. However, cysteine at similar concentration levels strongly... 

    Development of a paper-based plasmonic test strip for visual detection of methiocarb insecticide

    , Article IEEE Sensors Journal ; Volume 17, Issue 18 , 2017 , Pages 6044-6049 ; 1530437X (ISSN) Mohammadi, A ; Ghasemi, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Abstract
    This paper describes a simple and low-cost test strip for on-site monitoring of methiocarb insecticide. Hydrophilic filter paper soaked in agarose solution was bounded by hydrophobic solid wax and then was coated with unmodified gold nanoparticles (AuNPs). AuNPs aggregation caused by methiocarb served as colorimetric response. We demonstrated detection capability of methiocarb both in solution- and substrate-based sensor. A good linear relationship was obtained between the colorimetric response and the concentration of methiocarb ranging from 20 to 80 ng mL -1 with a limit of detection of 5 ng mL -1. Excellent selectivity toward methiocarb was observed among various pesticides and cationic... 

    Spectrophotometric determination of glutathione and cysteine based on aggregation of colloidal gold nanoparticles

    , Article Scientia Iranica ; Volume 19, Issue 3 , June , 2012 , Pages 958-963 ; 10263098 (ISSN) Hormozi Nezhad, M. R ; Seyedhosseini, E ; Robatjazi, H ; Sharif University of Technology
    2012
    Abstract
    We report herein the development of a highly sensitive colorimetric method for the determination of cysteine and glutathione, based on aggregation of the citrate capped gold nanoparticles (Au NPs). This was exploited from high affinity of low-molecular-weight aminothiols towards the Au NPs surface, which could induce displacement of the citrate shell by the thiolate shell of target molecules, resulting in aggregation of the NPs through intermolecular electrostatic interaction or hydrogen-bonding. As a result of aggregation, which can be affected by the ionic strength, pH and concentration of Au NPs, the plasmon band at around 521 nm decreases gradually, along with formation of a new red... 

    A sensitive colorimetric detection of ascorbic acid in pharmaceutical products based on formation of anisotropic silver nanoparticles

    , Article Scientia Iranica ; Volume 17, Issue 2 F , 2010 , Pages 148-153 ; 10263098 (ISSN) Hormozi Nezhad, M. R ; Karimi, M. A ; Shahheydari, F ; Sharif University of Technology
    2010
    Abstract
    A sensitive colorimetric method for the detection of ascorbic acid was proposed in this research based on the reduction of silver ions by ascorbic acid in the presence of citrate-stabilized silver seeds, additional trisodium citrate and a polymer such as polyvinylpyrrolidone. The color of the stable sol is controlled by varying the concentration of trisodium citrate (TSC), polyvinylpyrrolidone, silver nitrate and silver seeds. The reduction of Ag + to triangle silver nanoparticles (Ag-NPs) by ascorbic acid in the presence of trisodium citrate (TSC) and silver seeds produced two very intense surface plasmon resonance peaks of Ag-NPs. The plasmon absorbance of Ag-NPs allows the quantitative... 

    Selective colorimetric detection of pentaerythritol tetranitrate (PETN) using arginine-mediated aggregation of gold nanoparticles

    , Article Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy ; Volume 228 , 2020 Taefi, Z ; Ghasemi, F ; Hormozi Nezhad, M. R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Detection of pentaerythritol tetranitrate (PETN) as an explosive has been of great interest because of public safety and military concerns. Here, we have presented a simple, selective and sensitive colorimetric method for direct detection of PETN. The gold nanoparticles (AuNPs) were first exposed to arginine which has primary amines in its structure. Electron deficient –NH2 groups from arginine could strongly interact with –NO2 groups of PETN as electron donors. Hydrogen bonding happens between the –NO2 group of PETN and –NH2 group of arginine molecules. Therefore, selective aggregation of AuNPs happened because of the donor-acceptor and hydrogen bonding interactions. Due to the aggregation,...