Loading...
Search for: cobalt-phthalocyanine
0.011 seconds

    Fine-tuning demercaptanization process: A case study

    , Article Hydrocarbon Processing ; Volume 88, Issue 3 , 2009 ; 00188190 (ISSN) Mallaki, Z ; Farhadi, F ; Sharif University of Technology
    Gulf Publishing Company  2009

    Electrocatalytic oxidation of 2-thiouracil and 2-thiobarbituric acid at a carbon-paste electrode modified with cobalt phthalocyanine

    , Article Electroanalysis ; Volume 16, Issue 11 , 2004 , Pages 915-921 ; 10400397 (ISSN) Shahrokhian, S ; Hamzehloei, A ; Thaghani, A ; Mousavi, S. R ; Sharif University of Technology
    2004
    Abstract
    Voltammetric behavior of two mercaptopyrimidine derivatives (2-thiouracil and 2-thiobarbituric acid) has been studied by cyclic voltammetry at a cobalt phthalocyanine (CoPc)-modified carbon-paste electrode. The results of voltammetric determinations showed that the CoPc in the matrix of modified electrode acts as catalyst for electrooxidation of these thiols (RSH), lowering the overpotential of the reaction and significantly increasing the sensitivity for detection of thiols in neutral conditions. The results of voltammetric and polarization measurements in solutions with various pHs were used for prediction of the mechanism of electrocatalytic oxidation at the surface of modified electrode.... 

    Co–N doped reduced graphene oxide used as efficient electrocatalyst for dye-sensitized solar cells

    , Article Solar Energy Materials and Solar Cells ; Volume 157 , 2016 , Pages 591-598 ; 09270248 (ISSN) Belekoukia, M ; Ploumistos, A ; Sygellou, L ; Nouri, E ; Tasis, D ; Lianos, P ; Sharif University of Technology
    Elsevier 
    Abstract
    An efficient electrocatalyst for Pt-free I−/I3 − reduction has been synthesized by high temperature treatment of graphene oxide-cobalt phthalocyanine mixtures. The graphitic material was characterized by various techniques and was found to consist of reduced graphene oxide carrying CoN3 entities, obtained by thermal decomposition of cobalt phthalocyanine. This material had an ionization potential equal to 4.9±0.1 eV and thus it was judged appropriate to act as reduction electrocatalyst for the I−/I3 − redox electrolyte. It was subsequently deposited as thin film on FTO electrodes, which were employed as counter electrodes for dye-sensitized solar cells. Its capacity to reduce I−/I3 − redox... 

    Preparation and characterization of visible light sensitive nano titanium dioxide photocatalyst

    , Article Scientia Iranica ; Volume 19, Issue 6 , December , 2012 , Pages 1626-1631 ; 10263098 (ISSN) Tabaei, H. S. M ; Kazemeini, M ; Fattahi, M ; Sharif University of Technology
    2012
    Abstract
    Dye sensitizers loaded on TiO2 decrease the electron excitation energy, thereby improving the photocatalytic performance by causing an increase in sensitivity under visible light irradiation. Three dye sensitizer precursors, Mordant Orange 1, N3 (red dye) and Cobalt (II) Phthalocyanine Tetrasulfonate (CoPcTs), were utilized to load the photocatalyst. The rate of the electron trapping process on platinum is clearly compatible with the migration rate of boundary electrons. Consequently, the migration of boundary electrons from the conduction band towards electron acceptors is increased by loading platinum onto the titanium dioxide. In this research, TiO2 was synthesized from a titanium... 

    High yield of CO and synchronous s recovery from the conversion of CO2 and H2S in natural gas based on a novel electrochemical reactor

    , Article Environmental Science and Technology ; Volume 55, Issue 21 , 2021 , Pages 14854-14862 ; 0013936X (ISSN) Bai, J ; Zhang, B ; Zhang, Y ; Zhou, C ; Wang, P ; Zha, L ; Li, J ; Simchi, A ; Zhou, B ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    H2S and CO2 are the main impurities in raw natural gas, which needs to be purified before use. However, the comprehensive utilization of H2S and CO2 has been ignored. Herein, we proposed a fully resource-based method to convert toxic gas H2S and greenhouse gas CO2 synchronously into CO and elemental S by using a novel electrochemical reactor. The special designs include that, in the anodic chamber, H2S was oxidized rapidly to S based on the I−/I3− cyclic redox system to avoid anode passivation. On the other hand, in the cathodic chamber, CO2 was rapidly and selectively reduced to CO based on a porous carbon gas diffusion electrode (GDE) modified with polytetrafluoroethylene and cobalt...