Loading...
Search for: coastal-aquifer
0.006 seconds
Total 22 records

    Comment on "effects of tidal fluctuations on mixing and spreading in coastal aquifers: Homogeneous case" by María Pool et al

    , Article Water Resources Research ; Volume 51, Issue 6 , 2015 , Pages 4858- ; 00431397 (ISSN) Ataie Ashtiani, B ; Sharif University of Technology
    Blackwell Publishing Ltd  2015

    Numerical Modeling of Seawater Intrusion into Coastal Karst Aquifers

    , M.Sc. Thesis Sharif University of Technology Sousanabadi Farahani, Reza (Author) ; Ataie Ashtiani, Behzad (Supervisor)
    Abstract
    Coastal groundwater aquifers are among the prime resources for providing fresh water for coastal cities that are in danger of intensified seawater intrusion due to climate change and excessive pumping. These coastal aquifers extensively exist in different cities around the world, for example, in the south and north of Iran, and due to their complex inherent, they have yet to receive enough attention among scholars. The prime objective of this research is to simulate seawater intrusion by considering preferential path flows using COMSOL Multiphysics. Based on numerical approaches merits, this study aims to simulate seawater intrusion in karst aquifers. It explores the effects of conduits'... 

    Tidal effects on groundwater dynamics in unconfined aquifers

    , Article Hydrological Processes ; Volume 15, Issue 4 , 2001 , Pages 655-669 ; 08856087 (ISSN) Ataie Ashtiani, B ; Volker, R. E ; Lockington, D. A ; Sharif University of Technology
    2001
    Abstract
    The variation of seawater level resulting from tidal fluctuations is usually neglected in regional groundwater flow studies. Although the tidal oscillation is damped near the shoreline, there is a quasi-steady-state rise in the mean water-table position, which may have an influence on regional groundwater flow. In this paper the effects of tidal fluctuations on groundwater hydraulics are investigated using a variably saturated numerical model that includes the effects of a realistic mild beach slope, seepage face and the unsaturated zone. In particular the impact of these factors on the velocity field in the aquifer is assessed. Simulations show that the tidal fluctuation has substantial... 

    Numerical Models with Discrete Approach for Simulating Seawater Intrusion in Fractured and Karst Coastal Aquifers

    , M.Sc. Thesis Sharif University of Technology Mozafari, Behzad (Author) ; Ataie Ashtiani, Behzad (Supervisor)
    Abstract
    In many countries of the world, especially dry and semi-arid areas, coastal aquifers are used to provide fresh water. Many of these areas have also become urbanaized, which has made the need for freshwater more important. Seawater Intrusion (SWI) is the greatest limitation that influences the exploitation of groundwater in coastal aquifers, where with SWI, the amount of freshwater supply and other existing pumping wells are not used. The present study attempts to model SWI in karst and fractured coastal aquifers. For this purpose, two models with Discrete Fracture/Conduit Network approach in Fortran and also in COMSOL Multiphysics software have been developed to study the density-variable... 

    Elitist continuous ant colony optimization algorithm for optimal management of coastal aquifers

    , Article Water Resources Management ; Volume 25, Issue 1 , 2010 , Pages 165-190 ; 09204741 (ISSN) Ataie Ashtiani, B ; Ketabchi, H ; Sharif University of Technology
    2010
    Abstract
    This paper presents an evolutionary based approach to achieve optimal management of a coastal aquifer to control saltwater intrusion. An improved Elitist Continuous Ant Colony Optimization (ECACO) algorithm is employed for optimal control variables setting of coastal aquifer management problem. The objectives of the optimal management are; maximizing the total water-pumping rate, while controlling the drawdown limits and protecting the wells from saltwater intrusion. Since present work is one of the first efforts towards the application of an ECACO algorithm, sharp interface solution for steady state problem is first exploited. The performance of the developed optimization model is evaluated... 

    Uncertainty analysis for seawater intrusion in fractured coastal aquifers: Effects of fracture location, aperture, density and hydrodynamic parameters

    , Article Journal of Hydrology ; Volume 571 , 2019 , Pages 159-177 ; 00221694 (ISSN) Koohbor, B ; Fahs, M ; Ataie Ashtiani, B ; Belfort, B ; Simmons, C. T ; Younes, A ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study we use polynomial chaos expansion (PCE) to perform uncertainty analysis for seawater intrusion (SWI) in fractured coastal aquifers (FCAs) which is simulated using the coupled discrete fracture network (DFN) and variable-density flow (VDF) models. The DFN-VDF model requires detailed discontinuous analysis of the fractures. In real field applications, these characteristics are usually uncertain which may have a major effect on the predictive capability of the model. Thus, we perform global sensitivity analysis (GSA) to provide a preliminary assessment on how these uncertainties can affect the model outputs. As our conceptual model, we consider fractured configurations of the... 

    An Efficient Simulation-Optimization Model for Coastal Groundwater Management

    , Ph.D. Dissertation Sharif University of Technology Ketabchi, Hamed (Author) ; Ataie-Ashtiani, Behzad (Supervisor)
    Abstract
    Groundwater in coastal aquifers is one of the essential resources of freshwater in coastal regions, where are heavily populated or industrialized areas, and have critical ecosystems.The management of these resources is a priority to preserve groundwater from serious natural and human-induced threats such as salinization caused by seawater intrusion. The combined simulation-optimization techniques can be used for this purpose in determining optimal planning and management strategies. The implementation of such techniques for complex real-world and large -scale problems has major difficulties in terms of both computational efficiency (solution quality and required computational time) and... 

    Saltwater Up-coning into Pumping Wells in Coastal Aquifers in Fractured
    Soil

    , M.Sc. Thesis Sharif University of Technology Ebrahimi, Nazanin (Author) ; Ataie Ashtiani, Behzad (Supervisor)
    Abstract
    The goal of this research is to investigate the phenomenon of saltwater up-coning into pumping wells in fractured porous media. For this aim, two series of regular orthogonal fracture networks and different vertical and horizontal fracture apertures are simulated using an axisymmetric (2D vertical cross-section) model with a sharp interface approach. The effect of changing the pumping rate and the hydraulic conductivity has been examined to recognize other effective characteristics of the aquifer and pumping well on the saltwater up-coning. These simulations have been performed in COMSOL Multiphysics. The results indicate that the saltwater extent under the pumping well can be affected... 

    Polynomial chaos expansions for uncertainty propagation and moment independent sensitivity analysis of seawater intrusion simulations

    , Article Journal of Hydrology ; Volume 520 , January , 2015 , Pages 101-122 ; 00221694 (ISSN) Rajabi, M. M ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Real world models of seawater intrusion (SWI) require high computational efforts. This creates computational difficulties for the uncertainty propagation (UP) analysis of these models due the need for repeated numerical simulations in order to adequately capture the underlying statistics that describe the uncertainty in model outputs. Moreover, despite the obvious advantages of moment-independent global sensitivity analysis (SA) methods, these methods have rarely been employed for SWI and other complex groundwater models. The reason is that moment-independent global SA methods involve repeated UP analysis which further becomes computationally demanding. This study proposes the use of... 

    Semianalytical solutions for contaminant transport under variable velocity field in a coastal aquifer

    , Article Journal of Hydrology ; Volume 560 , 2018 , Pages 434-450 ; 00221694 (ISSN) Koohbor, B ; Fahs, M ; Ataie Ashtiani, B ; Simmons, C. T ; Younes, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Existing closed-form solutions of contaminant transport problems are limited by the mathematically convenient assumption of uniform flow. These solutions cannot be used to investigate contaminant transport in coastal aquifers where seawater intrusion induces a variable velocity field. An adaptation of the Fourier-Galerkin method is introduced to obtain semi-analytical solutions for contaminant transport in a confined coastal aquifer in which the saltwater wedge is in equilibrium with a freshwater discharge flow. Two scenarios dealing with contaminant leakage from the aquifer top surface and contaminant migration from a source at the landward boundary are considered. Robust implementation of... 

    Vulnerability mapping of coastal aquifers to seawater intrusion: Review, development and application

    , Article Journal of Hydrology ; Volume 570 , 2019 , Pages 555-573 ; 00221694 (ISSN) Parizi, E ; Hosseini, S. M ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, a review of the overlay/index methods served for delineation of vulnerable zones in coastal aquifers affected by SWI is provided. Then, a more realistic presentation of the vulnerability mapping of coastal aquifers to SWI through modified GALDIT index method by incorporating the influential factors on SWI is established. The modifications on GALDIT method including incorporating the seaward hydraulic gradient (i) instead of the height of groundwater level above sea level (L) (so-called GAiDIT), and considering hydraulic gradient (i) as an additional parameter to the GALDIT (so-called GALDIT-i). Three GALDIT, GAiDIT, and GALDIT-i methods were evaluated with data from three... 

    MODSharp: Regional-scale numerical model for quantifying groundwater flux and contaminant discharge into the coastal zone

    , Article Environmental Modelling and Software ; Volume 22, Issue 9 , 2007 , Pages 1307-1315 ; 13648152 (ISSN) Ataie Ashtiani, B ; Sharif University of Technology
    2007
    Abstract
    In this paper the development of a quasi-three-dimensional numerical model that can be used for quantifying groundwater inputs and associated contaminant discharged from coastal aquifers into the coastal zone at a regional scale is presented. The present model is called MODSharp. In order to handle problems at a regional scale, the sharp interface approach which is used for conceptualising seawater intrusion, is applied to this model. This model can be used for the simulation of groundwater flow and contaminant transport in layered coastal aquifers at a regional scale. The method of characteristics is used to solve the advection-dispersion equation, which governs contaminant transport in... 

    Uncertainty Analysis and Inverse Modeling of Seawater Intrusion in Coastal Aquifers

    , Ph.D. Dissertation Sharif University of Technology Rajabi, Mohammad Mahdi (Author) ; Ataei Ashtiani, Behzad (Supervisor)
    Abstract
    Groundwater is the primary source of freshwater in many coastal areas and small islands around the world. The most important hazard to groundwater quality in coastal aquifers is seawater intrusion (SWI) resulting from over pumping, prolonged drought conditions and sea level rise due to climate change impacts. Numerical models of SWI are an important tool in the management of coastal aquifers. However, numerical modeling of SWI is one of the most challenging problems in groundwater hydrology. One of the reasons for the challenging nature of SWI numerical modeling is the relatively large level of uncertainty associated with the estimation of the model input parameters. This study focused on... 

    Obtaining a Semi-analytical Solution for Contaminant Transport in Coastal Aquifers: Fourier-galerkin Method

    , M.Sc. Thesis Sharif University of Technology Koohbor, Behshad (Author) ; Ataie-Ashtiani, Behzad (Supervisor) ; Jamali, Mirmosaddegh (Co-Advisor)
    Abstract
    Existing closed form solutions of contaminant transport problems are limited by the mathematically convenient assumption of uniform flow. These solutions cannot be applied for coastal aquifers where seawater intrusion induces a variable velocity field. The Fourier series method is adapted to obtain a semi-analytical solution for contaminant transport in confined coastal aquifer in which the saltwater wedge is in equilibrium with a freshwater discharge flow. The developed method can be applied for different scenarios of contamination. Two scenarios dealing with, respectively, contaminant leakage from a source at the aquifer top surface and aquifer contamination from the landward boundary are... 

    Convective-Reactive Transport and Unstable Density-Driven Flow in Fractured Porous Media

    , M.Sc. Thesis Sharif University of Technology Shafabakhsh, Paiman (Author) ; Ataie-Ashtiani, Behzad (Supervisor)
    Abstract
    The goal of this study is to explore the density-driven flow and study the effect of fracture as well as chemical processes and reactions on convective transport. Convective flow is used in connection with the density-driven flow where the flow is driven by density differences in the fluid, which can be affected by the ambient rocks. Several studies of density-driven flow in porous media have focused on the effect of heterogeneity on the mixing convection; however, they neglect the key processes of geochemical reactions in fractured porous media. This study aims to address this gap by investigating the combined effect of heterogeneity (as fractures) and the existing geochemical reactions on... 

    Modeling Lakebed Hydrogeological Properties Effects on Lake and Groundwater Interaction (Case Study: Lake Urmia)

    , M.Sc. Thesis Sharif University of Technology Sheibani, Sorour (Author) ; Ataie Ashtiani, Behzad (Supervisor)
    Abstract
    Lake Urmia water level fell dramatically from 2006 to 2014. Since then the declining trend of water level has stopped but the lake has remained in a critical situation. Moreover, Lake Urmia became supersaturated with total salinity averaging more than 350 g/l. Salt precipitation and dissolved materials brought by inflowing rivers have formed a layer of sediment with low hydraulic conductivity on the lakebed. We conducted a series of numerical simulation scenarios to study the groundwater flow pattern in the vicinity of the hypersaline Lake Urmia using COMSOL Multiphysics®. In the first step, we performed the simulations in steady-state conditions. Secondly, we simulated the lake level fall... 

    Sea-level rise impacts on seawater intrusion in coastal aquifers: review and integration

    , Article Journal of Hydrology ; Volume 535 , 2016 , Pages 235-255 ; 00221694 (ISSN) Ketabchi, H ; Mahmoodzadeh, D ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Abstract
    Sea-level rise (SLR) influences groundwater hydraulics and in particular seawater intrusion (SWI) in many coastal aquifers. The quantification of the combined and relative impacts of influential factors on SWI has not previously been considered in coastal aquifers. In the present study, a systematic review of the available literature on this topic is first provided. Then, the potential remaining challenges are scrutinized. Open questions on the effects of more realistic complexities such as gradual SLR, parameter uncertainties, and the associated influences in decision-making models are issues requiring further investigation.We assess and quantify the seawater toe location under the impacts... 

    Evolutionary algorithms for the optimal management of coastal groundwater: A comparative study toward future challenges

    , Article Journal of Hydrology ; Volume 520 , January , 2015 , Pages 193-213 ; 00221694 (ISSN) Ketabchi, H ; Ataie Ashtiani, B ; Sharif University of Technology
    Elsevier  2015
    Abstract
    This paper surveys the literature associated with the application of evolutionary algorithms (EAs) in coastal groundwater management problems (CGMPs). This review demonstrates that previous studies were mostly relied on the application of limited and particular EAs, mainly genetic algorithm (GA) and its variants, to a number of specific problems. The exclusive investigation of these problems is often not the representation of the variety of feasible processes may be occurred in coastal aquifers. In this study, eight EAs are evaluated for CGMPs. The considered EAs are: GA, continuous ant colony optimization (CACO), particle swarm optimization (PSO), differential evolution (DE), artificial bee... 

    A generalized semi-analytical solution for the dispersive henry problem: effect of stratification and anisotropy on seawater intrusion

    , Article Water (Switzerland) ; Volume 10, Issue 2 , 2018 ; 20734441 (ISSN) Fahs, M ; Koohbor, B ; Belfort, B ; Ataie Ashtiani, B ; Simmons, C. T ; Younes, A ; Ackerer, P ; Sharif University of Technology
    MDPI AG  2018
    Abstract
    The Henry problem (HP) continues to play a useful role in theoretical and practical studies related to seawater intrusion (SWI) into coastal aquifers. The popularity of this problem is attributed to its simplicity and precision to the existence of semi-analytical (SA) solutions. The first SA solution has been developed for a high uniform diffusion coefficient. Several further studies have contributed more realistic solutions with lower diffusion coefficients or velocity-dependent dispersion. All the existing SA solutions are limited to homogenous and isotropic domains. This work attempts to improve the realism of the SA solution of the dispersive HP by extending it to heterogeneous and... 

    Effect of distance-dependent dispersivity on density-driven flow in porous media

    , Article Journal of Hydrology ; Volume 589 , October , 2020 Younes, A ; Fahs, M ; Ataie Ashtiani, B ; Simmons, C. T ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this study, the effect of distance-dependent dispersion coefficients on density-driven flow is investigated. The linear asymptotic model, which assumes that dispersivities increase linearly with distance from the source of contamination and reach asymptotic values at a large asymptotic distance, is employed. An in-house numerical model is adapted to handle distance-dependent dispersion. The effect of asymptotic-dispersion on aquifer contamination is analyzed for two tests: (i) a seawater intrusion problem in a coastal aquifer and (ii) a leachate transport problem from a surface deposit site. Global Sensitivity Analysis (GSA) combined with the Polynomial Chaos Expansion (PCE) surrogate...