Loading...
Search for: cnts
0.008 seconds

    Contribution of ordered-inordered phenomenon within the interphase region toward increasing elastic modulus in CNT/polymer nanocomposites

    , Article Materials Science and Technology Conference and Exhibition 2015, MS and T 2015, 4 October 2015 through 8 October 2015 ; Volume 1 , October , 2015 , Pages 595-602 ; 9781510813939 (ISBN) Shayesteh Zeraati, A ; Goodarzi Hosseinabadi, H ; NACE International ; Sharif University of Technology
    Association for Iron and Steel Technology, AISTECH  2015
    Abstract
    Exceptional mechanical properties of carbon nanotubes (CNTs) such as high elastic modulus, stiffness and tensile strength have made them as promising reinforcement in polymer nanocomposite systems. The characteristics of CNTs/polymer interphase region directly affect the efficiency of nanotubes for improving the nanocomposite mechanical properties. In this work, the influence of chains alignment within the interphase region on elastic response of the nanocomposite is assessed using a novel ordered-inordered approach. The applicability of the presented approach is examined by implementing the approach on a series of reported data available in the literature. The effects of CNT content,... 

    Temperature-Dependent Comparison between Delay of CNT and Copper Interconnects

    , Article IEEE Transactions on Very Large Scale Integration (VLSI) Systems ; Volume 24, Issue 2 , 2016 , Pages 803-807 ; 10638210 (ISSN) Alizadeh, A ; Sarvari, R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    The performance of gigascale integration chips improves by cryogenic technologies such as subambient cooling. In these conditions, interconnects may perform at temperatures as low as 50 K. However, the local temperature of interconnects could easily be as high as 600 K at high-temperature chips. In this brief, we investigated the impact of temperature on delay of local, intermediate, and global interconnects of International Technology Roadmap for Semiconductors Node 2024. This is done for different values of interconnect width and length, nanotube diameter, and percentage of metallic carbon nanotubes (CNTs) in a grown bundle. Results are compared with those of copper counterpart. We showed... 

    Design and fabrication of sensitive carbon nanotubes/PMMA film for acetone vapour detection

    , Article International Journal of Nanomanufacturing ; Volume 5, Issue 3-4 , 2010 , Pages 268-277 ; 17469392 (ISSN) Ghasempour, R ; Iraji Zad, A ; Hormozi Nezhad, M. R ; Sharif University of Technology
    2010
    Abstract
    We present gas sensing property of carbon nanotubes (CNTs) polymethylmethacrylate (PMMA) composite as the active element for acetone vapour detection at room temperature. The polymeric films were formed by spin coating method on SiO2 substrates. Then they were activated by dropping the CNTs suspension in acetone on the PMMA films. The CNT/PMMA films were characterised by SEM, TEM and Raman spectroscopy. Variation of film's electrical resistance after exposure polar and non-polar gases is utilised as the principle of gas sensing. The experimental results showed that the samples present chemical selectivity and reversibility toward polar gases especially acetone vapour  

    Catalytic graphitization behavior of phenolic resins by addition of in situ formed nano-Fe particles

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 101 , 2018 , Pages 50-61 ; 13869477 (ISSN) Rastegar, H ; Bavand Vandchali, M ; Nemati, A ; Golestani Fard, F ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    This work presents the catalytic graphitization process of phenolic resins (PR's) by addition of in situ nano-Fe particles as catalyst. Pyrolysis treatments of prepared compositions including various contents of nano-Fe particles were carried out at 600–1200 °C for 3 h under reducing atmosphere and graphitization process were evaluated by different techniques such as X-Ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), High Resolution Transmission Electron Microscopy (HRTEM), Simultaneous Thermal Analysis (STA) and Raman spectroscopy that mainly performed to identify the phase and microstructural analysis, oxidation resistance and extend of graphitized carbon... 

    Phase and microstructural evolution of low carbon MgO-C refractories with addition of Fe-catalyzed phenolic resin

    , Article Ceramics International ; 2018 ; 02728842 (ISSN) Rastegar, H ; Bavand vandchali, M ; Nemati, A ; Golestani Fard, F ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In the present paper, phase and microstructural characterization of low carbon MgO-C refractories with addition of Fe-catalyzed phenolic resins as binder were investigated. Initially, phenolic resin was modified using various amounts of Fe particles as catalyst originated from iron nitrate ([Fe(NO3)3·9H2O]). The MgO-C matrix compositions were prepared by using 7% of modified phenolic resin, shaped and cured at 200 °C for 24 h. The cured samples were coked in the temperature range from 800 to 1400 °C and then characterized by XRD and FE-SEM techniques. Based on attained results, in-situ graphitic carbons, particularly in carbon nanotubes (CNTs) network were gradually formed from Fe-catalyzed... 

    Direct growth of nickel-cobalt oxide nanosheet arrays on carbon nanotubes integrated with binder-free hydrothermal carbons for fabrication of high performance asymmetric supercapacitors

    , Article Composites Part B: Engineering ; Volume 172 , 2019 , Pages 41-53 ; 13598368 (ISSN) Hekmat, F ; Shahrokhian, S ; Hosseini, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A high performance asymmetric supercapacitor (ASC)has been fabricated by using nickel oxide-cobalt oxide nanosheets (NiO–CoO NSs), which were directly grown on carbon nanotubes (CNTs)and hydrothermal carbon spheres (HTCs)as positive and negative electrodes, respectively. Both electrode materials are binder-free prepared by using a catalytic chemical vapour deposition (CVD)approach followed by a facile hydrothermal method for cathode and a one-step environmental-friendly route called hydrothermal carbonization for anode. Using NiO–CoO NSs@CNTs and HTCs, which were directly grown on Ni foam, not only leads to a very small equivalent series resistance, but also provides an impressive capacitive... 

    Phase and microstructural evolution of low carbon MgO-C refractories with addition of Fe-catalyzed phenolic resin

    , Article Ceramics International ; Volume 45, Issue 3 , 2019 , Pages 3390-3406 ; 02728842 (ISSN) Rastegar, H ; Bavand vandchali, M ; Nemati, A ; Golestani Fard, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In the present paper, phase and microstructural characterization of low carbon MgO-C refractories with addition of Fe-catalyzed phenolic resins as binder were investigated. Initially, phenolic resin was modified using various amounts of Fe particles as catalyst originated from iron nitrate ([Fe(NO3)3·9H2O]). The MgO-C matrix compositions were prepared by using 7% of modified phenolic resin, shaped and cured at 200 °C for 24 h. The cured samples were coked in the temperature range from 800 to 1400 °C and then characterized by XRD and FE-SEM techniques. Based on attained results, in-situ graphitic carbons, particularly in carbon nanotubes (CNTs) network were gradually formed from Fe-catalyzed... 

    MgO-incorporated carbon nanotubes-reinforced Mg-based composites to improve mechanical, corrosion, and biological properties targeting biomedical applications

    , Article Journal of Materials Research and Technology ; Volume 20 , 2022 , Pages 976-990 ; 22387854 (ISSN) Abazari, S ; Shamsipur, A ; Bakhsheshi-Rad, H. R ; Keshavarz, M ; Kehtari, M ; Ramakrishna, S ; Berto, F ; Sharif University of Technology
    Elsevier Editora Ltda  2022
    Abstract
    In this study, magnesium oxide (MgO) nanoparticles are incorporated on carbon nanotubes (CNTs) to reinforce Mg-3Zn-1Mn alloy (ZM31 alloy) by semi-powder metallurgy, followed by hot extrusion, with the purpose of improving the mechanical and biological properties of Mg-based alloy. The microstructural analysis of the nanocomposites indicated a reduction in grain size of Mg alloy with the incorporation of CNTs with a maximum reduction of 61% (ZM31/CNTs), with further reduction in grain size (68%) detected when MgO integrated CNTs composites (ZM31/MgO-CNTs). The compression characteristics of the composites indicate an increase in ultimate compressive strength of 36% and 44%, respectively, with... 

    Mediator-less highly sensitive voltammetric detection of glutamate using glutamate dehydrogenase/vertically aligned CNTs grown on silicon substrate

    , Article Biosensors and Bioelectronics ; Volume 31, Issue 1 , 2012 , Pages 110-115 ; 09565663 (ISSN) Gholizadeh, A ; Shahrokhian, S ; Iraji zad, A ; Mohajerzadeh, S ; Vosoughi, M ; Darbari, S ; Sanaee, Z ; Sharif University of Technology
    Abstract
    A sensitive glutamate biosensor is prepared based on glutamate dehydrogenase/vertically aligned carbon nanotubes (GLDH, VACNTs). Vertically aligned carbon nanotubes were grown on a silicon substrate by direct current plasma enhanced chemical vapor deposition (DC-PECVD) method. The electrochemical behavior of the synthesized VACNTs was investigated by cyclic voltammetry and electrochemical impedance spectroscopic methods. Glutamate dehydrogenase covalently attached on tip of VACNTs. The electrochemical performance of the electrode for detection of glutamate was investigated by cyclic and differential pulse voltammetry. Differential pulse voltammetric determinations of glutamate are performed...