Loading...
Search for: chondrogenesis
0.005 seconds

    Design and Manufacture of an Engineered Scaffold in Order to Repair Tissue Exposed to Mechanical Force, for Tissue Engineering Application

    , M.Sc. Thesis Sharif University of Technology Haghighi, Paniz (Author) ; Shamloo, Amir (Supervisor)
    Abstract
    Articular cartilage has limited repair capability following traumatic injuries and current methods of treatment remain inefficient. Reconstructing cartilage provides a new way for cartilage repair and natural polymers are often used as scaffold because of their biocompatibility and biofunctionality. The goal of cartilage tissue engineering is to design a scaffold with proper pore structure and similar mechanical properties to the native tissue. In this study Porous scaffolds prepared from silk fibroin, chitosan and gelatin blends with varying ratio of silk fibroin and gelatin by freeze drying method were characterized for physicochemical, mechanical and biological properties. Among the... 

    Developing Protein-Loaded Modified Hyaluronic Acid Hydrogel for Tissue Regeneration

    , M.Sc. Thesis Sharif University of Technology Asadi Korayem, Maryam (Author) ; Abdekhodaie, Mohammad Jafar (Supervisor)
    Abstract
    Growth factors play an important role in tissue repair and regeneration including articular cartilage tissue. Direct injection of growth factor is a common practice in clinics. However, it has been shown that this method is not very effective and, in some cases, induces some side effects. Moreover, incorporation of this valuable signals in systems where they are quickly released and washed out is not effective as well. Thereby the aim of this study was to design and fabricate an efficient system to effectively deliver growth factors for cartilage tissue engineering. The designed system is an injectable, in situ forming hydrogel, based on hyaluronic acid (HA) as a biocompatible and attractive... 

    Development of a genetic algorithm based biomechanical simulation of sagittal lifting tasks

    , Article Biomedical Engineering - Applications, Basis and Communications ; Volume 17, Issue 1 , 2005 , Pages 12-18 ; 10162372 (ISSN) Gündoǧdu, Ö ; Anderson, K. S ; Parnianpour, M ; Sharif University of Technology
    Institute of Biomedical Engineering  2005
    Abstract
    Fibrin sealant and platelet gels are human blood-derived, biodegradable, non toxic, surgical products obtained by mixing a fibrinogen concentrate or a platelet rich plasma with thrombin, respectively. Fibrin sealant is now a well known surgical tool increasingly used to stop or control bleeding, or to provide air and fluid tightness in many surgical situations. Platelet gels are newly developed preparations that are of specific interest because they contain numerous physiological growth factors and cytikines that are released upon the activation of blood platelets by thrombin. These growth factors, including PDGF, TGF-β1, BMP, and VEGF have been shown to stimulate cell growth and... 

    A dual functional chondro-inductive chitosan thermogel with high shear modulus and sustained drug release for cartilage tissue engineering

    , Article International Journal of Biological Macromolecules ; Volume 205 , 2022 , Pages 638-650 ; 01418130 (ISSN) Dehghan Baniani, D ; Mehrjou, B ; Wang, D ; Bagheri, R ; Solouk, A ; Chu, P. K ; Wu, H ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    We report a chitosan-based nanocomposite thermogel with superior shear modulus resembling that of cartilage and dual pro-chondrogenic and anti-inflammatory functions. Two therapeutic agents, kartogenin (KGN) and diclofenac sodium (DS), are employed to promote chondrogenesis of stem cells and suppress inflammation, respectively. To extend the release time in a controlled manner, KGN is encapsulated in the uniform-sized starch microspheres and DS is loaded into the halloysite nanotubes. Both drug carriers are doped into the maleimide-modified chitosan hydrogel to produce a shear modulus of 167 ± 5 kPa that is comparable to that of articular cartilage (50–250 kPa). Owing to the hydrogel... 

    A microfabricated platform for the study of chondrogenesis under different compressive loads

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 78 , 2018 , Pages 404-413 ; 17516161 (ISSN) Kowsari Esfahan, R ; Jahanbakhsh, A ; Saidi, M. S ; Bonakdar, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Microfluidic devices are beneficial in miniaturizing and multiplexing various cellular assays in a single platform. Chondrogenesis is known to pertain to chemical, topographical, and mechanical cues in the microenvironment. Mechanical cues themselves have numerous parameters such as strain magnitude, frequency, and stimulation time. Effects of different strain magnitudes on the chondrogenic differentiation of adult stem cells have not been explored thoroughly. Here, a new multilayer microdevice is presented for the unidirectional compressive stimulation of cells in a three-dimensional cell culture. Numerical simulations were performed to evaluate and optimize the design. Results showed a... 

    Injectable in situ forming kartogenin-loaded chitosan hydrogel with tunable rheological properties for cartilage tissue engineering

    , Article Colloids and Surfaces B: Biointerfaces ; Volume 192 , 2020 Dehghan-Baniani, D ; Chen, Y ; Wang, D ; Bagheri, R ; Solouk, A ; Wu, H ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Limited regeneration capacity of cartilage can be addressed by tissue engineering approaches including localized delivery of bioactive agents using biomaterials. Although chitosan hydrogels have been considered as appropriate candidates for these purposes, however, their poor mechanical properties limit their real applications. Here, we develop in situ forming chitosan hydrogels with enhanced shear modulus by chemical modification of chitosan using N-(β-maleimidopropyloxy) succinimide ester (BMPS). Moreover, we utilize β-Glycerophosphate (β-GP) in the hydrogels for achieving thermosensitivity. We investigate the effects of BMPS, β-GP and chitosan concentration on rheological and swelling...