Loading...
Search for: chemical-reactors
0.007 seconds
Total 58 records

    Control of a chemical reactor with chaotic dynamics

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 29, Issue 4 , 2010 , Pages 149-159 ; 10219986 (ISSN) Rasoulian, S ; Shahrokhi, M ; Salarieh, H ; Sharif University of Technology
    2010
    Abstract
    In this paper, control of a non-isothermal continuous stirred tank reactor in which two parallel autocatalytic reactions take place has been addressed. The reactor shows chaotic behavior for a certain set of reactor parameters. In order to control the product concentration, an optimal state feedback controller has been designed. Since concentrations of reactor species are not measured, an observer has been designed for implementation of the proposed control scheme. The local asymptotic stability of the closed-loop system including observer dynamics has been shown via the Lyapunov stability theorem. effectiveness of the proposed controller in load rejection and set point tracking has been... 

    Oxygen permeation and oxidative coupling of methane in membrane reactor: A new facile synthesis method for selective perovskite catalyst

    , Article Journal of Molecular Catalysis A: Chemical ; Volume 286, Issue 1-2 , 2008 , Pages 79-86 ; 13811169 (ISSN) Taheri, Z ; Nazari, K ; Safekordi, A. A ; Seyed Matin, N ; Ahmadi, R ; Esmaeili, N ; Tofigh, A ; Sharif University of Technology
    2008
    Abstract
    A dense membrane of La0.6Sr0.4Co0.8Fe0.2O3- δ (LSCF) perovskite was prepared by a new chelating agent, ethylene diamine N,N,N′,N′-tetra N-acetyl diamine (EDTNAD). As a potent ligand, EDTNAD provided a facile one-step method to form complexes of the four metal ions, simultaneously. The oxygen permeation flux through the pure perovskite LSCF dense membrane was measured over temperature range of 1073-1223 K, thickness of 0.7-1.0 mm and oxygen partial pressure of 0.1-1.0 bar. Oxidative coupling of methane (OCM) reaction using LSCF disk in the atmospheric membrane reactor and over the temperature range of 1073-1173 K showed a C2 selectivity of 100% and C2 yield of 5.01% at 1153 K. Furthermore,... 

    Two observer-based nonlinear control approaches for temperature control of a class of continuous stirred tank reactors

    , Article Chemical Engineering Science ; Volume 63, Issue 2 , 2008 , Pages 395-403 ; 00092509 (ISSN) Salehi, S ; Shahrokhi, M ; Sharif University of Technology
    2008
    Abstract
    In this paper, two nonlinear observer based controllers for temperature control of a continuous stirred tank reactor in which a special class of parallel exothermic reactions take place are proposed. A reduced order nonlinear observer is constructed to estimate the concentration in the reactor. The observer is coupled with two nonlinear controllers, designed based on two well-known techniques, namely input-output linearization and backstepping for controlling the reactor temperature. For dampening the effect of observer error dynamics, a compensating term is used in each control law. The asymptotical stability of the closed-loop system is shown by the Lyapunov's stability theorem. The... 

    Temperature control of styrene bulk polymerization in a tubular reactor

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Ghafoor Mohseni, P ; Shahrokhi, M ; Sharif University of Technology
    2006
    Abstract
    Due to advantages of tubular polymerization reactors, a tubular reactor was used as the postpolymerizer for thermal bulk polymerization of styrene. By solving the mathematical model, static and dynamic simulations were carried out to study the reactor's behavior. In order to have a desired product regarding the monomer conversion and polydispersity at the reactor outlet, a specific temperature profile must be kept along the reactor's length. Based on the desired profile and using the system model, a trajectory for the jacket temperature was obtained. To apply the desired jacket temperature, the jacket is divided into three zones. The set-point of each zone has been obtained by discretizing... 

    Bioleaching of low-grade sphalerite using a column reactor

    , Article Hydrometallurgy ; Volume 82, Issue 1-2 , 2006 , Pages 75-82 ; 0304386X (ISSN) Mousavi, S. M ; Jafari, A ; Yaghmaei, S ; Vossoughi, M ; Roostaazad, R ; Sharif University of Technology
    2006
    Abstract
    The effects of several variables on zinc recovery in column bioleaching have been investigated. The ore contained sphalerite and pyrite as the main sulfide minerals and chalcopyrite and galena as minor minerals. Tests were carried out using a bench-scale column leach reactor which was inoculated with mesophilic (Acidithiobacillus ferrooxidans) and thermophilic (Sulfobacillus) iron oxidizing bacteria; initially isolated from the Sarcheshmeh chalcopyrite concentrate (Kerman, Iran) and Kooshk sphalerite concentrate (Yazd, Iran), respectively. In the inoculated column, jarosite and elemental sulfur were formed. The leaching rate of sphalerite tended to increase with dissolved ferric ion... 

    Development of a continuous kinetic model for catalytic hydrodenitrogenation of bitumen

    , Article Scientia Iranica ; Volume 14, Issue 2 , 2007 , Pages 152-160 ; 10263098 (ISSN) Ashuri, E ; Khorasheh, F ; Gray, M. R ; Sharif University of Technology
    Sharif University of Technology  2007
    Abstract
    Catalytic hydrocracking of topped Athabasca bitumen was investigated in a continuous stirred-basket 0reactor, using a fresh and spent commercial catalyst, as well as in the presence of no catalyst. A continuous lumping model was developed for kinetic analysis of hydrodenitrogenation and hydrocracking reactions. The normalized boiling point was used to describe the reactant mixture as a continuous mixture. The continuous model, with five adjustable parameters, was used to describe hydrocracking reactions. Reactions of nitrogen compounds were described by series reactions, involving cracking to lower molecular weight products, as well as direct denitrogenation. The model was able to accurately... 

    Kinetic investigation of NDMA to UDMH hydrogenation on a pd/C catalyst

    , Article Iranian Journal of Science and Technology, Transaction B: Engineering ; Volume 30, Issue 5 , 2006 , Pages 581-593 ; 03601307 (ISSN) Gorji, M ; Kazemeini, M ; Bozorgmehri, R ; Sharif University of Technology
    2006
    Abstract
    Unsymmetrical dimethyl hydrazine (UDMH) is a strong propellant, which due to its very good physical properties and high power of repellency has been utilized as a liquid fuel for fighter jet engines for so many years. There are different methods for production of this material. One of the more efficient ones which results in higher yields compared to others is the catalytic hydrogenation of Nitroso Dimethylamine (NDMA). In this work hydrogenation of NDMA to UDMH on a 5% Pd/C in aqueous solution of NDMA was studied experimentally. Experiments were carried out in a Semi-batch three phase STR reactor under constant pressure and temperature in the range of 40 to 70°C, pressures of up to 15 bar... 

    Optimal Control of Chemical Reactors Based on Optimization Methods Inspired from Artificial Immune Systems

    , M.Sc. Thesis Sharif University of Technology Mohammadi, Mohammad (Author) ; Pishvaie, Mahmoud Reza (Supervisor)
    Abstract
    Artificial immune systems (AIS) constitute a novel area of bio-inspired computing. Biological models of the natural immune system, in particular the theories of clonal selection, immune networks and negative selection, have provided the inspiration for AIS algorithms. Moreover, such algorithms have been successfully employed in a wide variety of different areas, but have not been applied for chemical processes yet. One important part of the immune systems is lymphatic system. Clonal selection is one of the few algorithms that belong to the family of AIS techniques. Clonal selection algorithm is the computational implementation of the clonal selection principle. In this project, we have... 

    Synchronization of Two Chemical Reactors

    , M.Sc. Thesis Sharif University of Technology Babaei Pourkargar, Davood (Author) ; Shahrokhi, Mohammad (Supervisor)
    Abstract
    Chaotic behavior takes place in different physical systems such as chemical reactors. In this thesis, dynamical behavior of chemical reactors in which polymerization or series reactions take place has been considered. It has been shown that these reactors have chaotic dynamics under special condition. Two reactors of the second type (with series reactions) for cases of known and unknown parameters have been synchronized by a control method and stability of the proposed scheme has been established by the Lyapunov stability theorem. Simulation results show the effectiveness of proposed method. Since concentration measurement is difficult and expensive, an observer has been used for... 

    Unsteady Analysis of a Slinger Combustion Chamber by the Chemical Reactor Network Model

    , M.Sc. Thesis Sharif University of Technology Soroush, Fariborz (Author) ; Farshchi, Mohammad (Supervisor)
    Abstract
    Up to early seventies, Gas turbine combustor design was very time consuming and costly process including trial and errors through test rigs. Over the time analytical-experimental relationships take place as one of the key rules in the design processes. With the increasing power of computer calculations, computational fluid dynamics find its way in the procedure. Obtaining a deeper understanding of flow conditions and geometry inside the chamber, a great reduction in production time and cost of revisions to rigs and samples were achieved. Finding a precise prediction of polluting elements like NOx (less than 10 ppm) after many run hours and enormous computing resources, CFD methods must... 

    Adaptive fuzzy approach for H∞ temperature tracking control of continuous stirred tank reactors

    , Article Control Engineering Practice ; Volume 16, Issue 9 , September , 2008 , Pages 1101-1108 ; 09670661 (ISSN) Salehi, S ; Shahrokhi, M ; Sharif University of Technology
    2008
    Abstract
    In this paper, an adaptive fuzzy temperature controller is proposed for a class of continuous stirred tank reactors (CSTRs) based on input-output feedback linearization. Since for control implementation concentrations of all species are needed, based on the observability concept, a fuzzy logic system is used to estimate the concentration dependent terms and other unknown system parameters in the control law, using temperature measurements. It has been shown that the H∞ tracking control performance with a prescribed attenuation level is achieved, by using the proposed controller. Finally the effectiveness of the proposed controller has been demonstrated by applying it to a benchmark chemical... 

    Which method is better for the kinetic modeling: decimal encoded or binary genetic algorithm?

    , Article Chemical Engineering Journal ; Volume 130, Issue 1 , 2007 , Pages 29-37 ; 13858947 (ISSN) Boozarjomehry, R. B ; Masoori, M ; Sharif University of Technology
    2007
    Abstract
    Kinetic modeling is an important issue, whose objective is the accurate determination of the rates of various reactions taking place in a reacting system. This issue is a pivotal element for the process design and development particularly for novel processes which are based on reactions taking place between various types of species. In this paper, the Genetic Algorithms have been used to develop a systematic computational framework for kinetic modeling of various reacting systems. This framework can be used to find the optimum values of various parameters that exist in the kinetic model of a reacting system. The Fischer-Tropsch (FT) reactions have been used as the kinetic modeling bench... 

    An experimental kinetic optimization of NDMA hydrogenation to UDMH and DMA on a Pd/C catalyst

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Gorji, M ; Kazememi, M ; Bozorgmehri, R ; Sharif University of Technology
    2006
    Abstract
    The Unsymmetrical dimethyl hydrazine (UDMH) apart from its use as a versatile rocket fuel, finds numerous industrial applications. Interest in UDMH for various applications in the missile and rocket industry has prompted the study of this member of hydrazine family to greater extent. It can be prepared in several ways but one of the most efficient ones which results in higher yields is the catalytic hydrogenation of Nitroso Dimethylamine (NDMA). In this work the kinetic of NDMA to UDMH hydrogenation on a 5% Pd/C in aqueous solution of NDMA was studied experimentally and optimum conditions of the reaction for maximum yield of UDMH in the presence of undesired dimethyl amine (DMA) product was... 

    A three dimensional CFD modeling of hydrodynamics and mass transfer in a gas-liquid impeller stirred tank reactor

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Gorji, M ; Bozorgmehry Boozarjomehry, R ; Kazemeini, M ; Sharif University of Technology
    2006
    Abstract
    Multiphase impeller stirred tank reactors enhance mixing of reacting species used in a variety of chemical industries. Gas-liquid mixing and mass transfer between these phases is an important application in reactor design. One such an example is hydrogenation reaction of aqueous NDMA (Nitroso dimethyl amine) solution in which one of the parameters having a significant effect on the reaction rate is mass transfer. This parameter in turn is a function of impeller shape and rotational speed, gas flow rate and reactor scale. Computational Fluid Dynamics (CFD) is a useful tool in the analysis, design and scale up of stirred tank reactors via investigating hydrodynamics of gas and liquid flow,... 

    2D and 3D simulation of bubble columns using CFD methods

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Irani, M ; Bozorgmehri, R ; Sharif University of Technology
    2006
    Abstract
    This article presents the results of 2D and 3D simulations of a bubble column reactor at steady state conditions and low gas flow rates. The simulations have been done based on a two-fluid model with a k - ε model used for turbulence modeling. The experimental data have been obtained by differential pressure transducer. For analyzing of hydrodynamic parameters such as hold up and velocity profiles of phases, a system consists of water tank and air aerated from bottom is set up. The simulations have been done based on two different approaches which are mixture and eulerian approaches. Despite the fact that these approaches lead to similar results, the convergence and stability of eulerian... 

    Design, manufacture and application of a microreactor for the decomposition of ethyl mercaptan on an H-ZSM-5 catalyst

    , Article Journal of Cleaner Production ; Volume 292 , 2021 ; 09596526 (ISSN) Hosseinpour, V ; Kazemeini, M ; Mohammadi, A ; Rashidi, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Catalytic decomposition of the ethyl mercaptan over an H-ZSM-5 zeolite in a newly designed microreactor was undertaken in this study. A numerically developed distributor possessing superior flow distribution was amended to 24 parallel microchannels with 64 mm length, 700 μm width, and 600 μm depth. Ethyl mercaptan complete conversion required 350 °C through the developed microreactor while in a conventional fixed-bed-reactor 400 °C was needed. Higher selectivity towards the main products of this decomposition (hydrogen sulfide and ethylene) were observed in this microreactor in comparison to that of a fixed-bed-reactor. In addition, lower selectivity towards formation of byproducts was... 

    Modeling, simulation and control of a methanol synthesis fixed-bed reactor

    , Article Chemical Engineering Science ; Volume 60, Issue 15 , 2005 , Pages 4275-4286 ; 00092509 (ISSN) Shahrokhi, M ; Baghmisheh, G. R ; Sharif University of Technology
    2005
    Abstract
    In this paper, the dynamic behavior and control of the low pressure methanol synthesis fixed bed reactor have been investigated. For simulation purpose, a heterogeneous one-dimensional model has been developed. First, the reactor simulation is carried out under steady-state condition and the effects of several parameters such as shell temperature, feed composition (especially CO2 concentration) and recycle ratio on the methanol productivity and reactor temperature profile are investigated. Using the steady state model and a trained feedforward neural network that calculates the effectiveness factor, an optimizer which maximizes the reactor yield has been developed. Through the dynamic... 

    The effect of influent COD and upward flow velocity on the behaviour of sulphate-reducing bacteria

    , Article Process Biochemistry ; Volume 40, Issue 7 , 2005 , Pages 2305-2310 ; 13595113 (ISSN) Shayegan, J ; Ghavipanjeh, F ; Mirjafari, P ; Sharif University of Technology
    2005
    Abstract
    The effect of up velocity and influent COD concentration on the activity of sulphate-reducing bacteria (SRB) in UASB reactors is discussed. To study these effects, four UASB reactors were built and utilized in parallel. Examinations were carried out in two different concentrations of molasses (500 mg COD/l and 1000 mg COD/l) and four different upward flow velocities. It was observed that at velocities greater than 1 m/h, SRB bacteria were easily washed out from the reactors due to lower density and lack of ability to form dense and firm granules. It was found that in low-strength wastewaters with a COD to sulphate ratio of 2, an upward velocity in the range of 1.5-2.5 m/h could be... 

    Simulation of Hydrocarbon Waste-gas Combustion in Incinerator and Pollution Control

    , M.Sc. Thesis Sharif University of Technology Modarres, Mohammad Reza (Author) ; Darbandi, Masoud (Supervisor)
    Abstract
    Emission control, especially Carbon Monoxides (CO) as one of the major by-products of combustion processes, is one of the most serious challenges in burning waste-gases with high amounts of humidity and Carbon Monoxide. We investigated an oil waste-gas incinerator serving to a bitumen production line located in Pasargad Oil Company, Shazand, Arak, Iran. The aforementioned incinerator was criticized seriously for its high CO emissions. We were requested to find a solution to reduce the undesirable CO emission from that. Following the environmental standards, there is an upper limit of 150 ppm for the CO produced by an industrial waste oil incinerator. To present an inclusive solution for such... 

    Simulation and experimental studies of methane oxidative coupling reaction in a bench scale fixed bed reactor

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Volume 35, Issue 15 , Aug , 2013 , Pages 1418-1426 ; 15567036 (ISSN) Valadkhani, A ; Shahrokhi, M ; Pishvaie, M. R ; Zarrinpashneh, S ; Sharif University of Technology
    2013
    Abstract
    Oxidative coupling of methane in a bench scale fixed bed tubular reactor over Mn-Na2WO4/SiO2 catalyst has been studied. Four kinetic models have been considered for oxidative coupling of methane reactions and compared through experimental data, and the best kinetic model has been selected. For removing the heat of reaction, a molten salt bath system surrounding the reactor tube has been proposed. Effects of different factors, such as CH4/O2 ratio, are investigated through experimental and simulation studies. A good agreement has been observed between simulation and experimental data. The reactor behaviors under isothermal and adiabatic conditions have also been simulated