Loading...
Search for: cellulose-acetate
0.023 seconds

    Evaluation of prepared natural polymers in the extraction of chlorobenzenes from environmental samples: sol–gel–based cellulose acetate-phenyltriethoxysilane fibers

    , Article Microchemical Journal ; Volume 142 , 2018 , Pages 265-272 ; 0026265X (ISSN) Bagheri, H ; Golzari Aqda, T ; Enteshari Najafabadi, M ; Sharif University of Technology
    Abstract
    In this research, three fibers including cellulose acetate (CA), CA–phenyltriethoxysilane (PTES) prepared via sol–gel electrospinning and sol–gel–based CA fibers immersed in PTES solution (dipped–CA–PTES) were prepared. The composition and morphology of the prepared fibers were evaluated by energy dispersive X-ray spectroscopy and field emission scanning electron microscopy. The prepared fibers were implemented in a home–made needle trap device, followed by thermal desorption of the selected chlorobenzenes (CBs) to a gas chromatography–flame ionization detector. Finally, parameters affecting the extraction methodology such as the amount of sorbent, extraction time and temperature, desorption... 

    Cellulose acetate/magnetic graphene nanofiber in enhanced human mesenchymal stem cells osteogenic differentiation under alternative current magnetic field

    , Article SPIN ; Volume 9, Issue 2 , 2019 ; 20103247 (ISSN) Hatamie, S ; Mohamadyar Toupkanlou, F ; Mirzaei, S ; Ahadian, M. M ; Hosseinzadeh, S ; Soleimani, M ; Sheu, W. J ; Wei, Z. H ; Hsieh, T. F ; Chang, W. C ; Wang, C. L ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2019
    Abstract
    The three-dimensional (3D) nano scaffold of the cellulose acetate (CA) containing graphene/cobalt nanocomposite (0.1wt.%) was fabricated via electrospinning technique, and its impact on bone regeneration was investigated. Through this aim, bone marrow mesenchymal stem cells are cultured on the CA, and graphene/cobalt (rGO/Co)/CA nanocomposite scaffold surfaces and the samples are treated under low frequency alternative magnetic field (75Hz). The scaffolds are characterized using Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and thermal studies (TG/DSC). The proliferation behavior of stem cells on CA, and rGO/Co/CA nano scaffolds are studied by MTT assay, show their... 

    Investigating morphology and performance of cellulose acetate butyrate electrospun nanofiber membranes for tomato industry wastewater treatment

    , Article Desalination and Water Treatment ; Volume 64 , 2017 , Pages 127-135 ; 19443994 (ISSN) Hosseini, S. A ; Soltanieh, M ; Mousavi, S. M ; Sharif University of Technology
    Desalination Publications  2017
    Abstract
    In this research, cellulose acetate butyrate (CAB) electrospun nanofiber membrane (ENM) was prepared by electrospinning method in order to separate the contaminants of an industrial wastewater. The influence of various electrospinning parameters on morphology and average fiber diameter of the membranes were investigated by scanning electron microscopy and image analysis. The permeability of the membranes was evaluated by measuring pure water flux. In order to investigate the performance of the prepared membranes for tomato wastewater treatment, the rejection of the pollution indices and flux were determined. The results demonstrated the potential of using CAB nanofiber membrane for... 

    Experimental Preparation of a Nanofibrous Membrane for Separation of Wastewater Contaminants

    , M.Sc. Thesis Sharif University of Technology Hosseini, Abolhassan (Author) ; Soltanieh, Mohammad (Supervisor) ; Mousavi, Mahmoud (Supervisor)
    Abstract
    In this project, cellulose acetate butyrate (CAB) nanofibrous membranes in order to separate the contaminants of an industrial wastewater were prepared. Electrospinning process that is an effective method to fabricate nanofibers was used to prepare the membranes. Since various parameters affect this process and fibers morphology, optimization of these parameters is necessary for preparation of improved membranes. So the effect of parameters of solvent system, polymer concentration, applied voltage, distance between the tip of needle and collector, and rotational speed of collector on morphology and diameter of the nanofibers was investigated. Scanning electron microscopy (SEM) and image... 

    Synthesis & Characterization of All-Cellulose Nanocomposites Containing Natural Extracts for Smart Packaging Applications

    , M.Sc. Thesis Sharif University of Technology Azizi Saadatlou, Ghazaleh (Author) ; Pircheraghi, Gholamreza (Supervisor)
    Abstract
    In this project, all-cellulose nanocomposites for smart packaging of meat products were synthesized via film casing method. These nanocomposites were aimed to provide visual response to pH change, which occurs due to decay of the meat products. The prepared nanocomposites would be placed inside the packages to be in direct contact with the products and could improve shelf life the products with the help of antibacterial natural extracts incorporated in the samples.Synthesis of the samples started with cellulose nano whiskers synthesis via acid hydrolysis. The prepared nanoparticles were then characterized with XRD, DLS, and Zeta potential analysis. It was shown that a big portion of the... 

    Porous eco–friendly fibers for on–line micro solid–phase extraction of nonsteroidal anti–inflammatory drugs from urine and plasma samples

    , Article Journal of Chromatography A ; Volume 1574 , 2018 , Pages 18-26 ; 00219673 (ISSN) Golzari Aqda, T ; Behkami, S ; Bagheri, H ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this study, cellulose acetate (CA) fibers were prepared using different solvent systems in electrospinning. The recorded scanning electron microscopy micrographs indicated that the morphology of the prepared fibers is closely associated with the type of electrospinning solvents. The prepared CA fibers were used as an extractive phase for on–line micro–solid phase extraction (μ-SPE) of nonsteroidal–inflammatory drugs (NSAIDs) in biological samples pursued by HPLC–UV determination. Work conducted on this research ascertained that the use of dichloromethane:acetone (3:1, v/v) solvent system in the CA dissolution for electrospinning, leads to the formation of porous ribbon–like fibers and... 

    Polysaccharide-Based Nanocomposites as Green Sorbents in Microextraction Methodologies

    , Ph.D. Dissertation Sharif University of Technology Golzari Aqda, Tahereh (Author) ; Bagheri, Habib (Supervisor)
    Abstract
    This thesis is focused on the preparation and use of polysaccharides as extractive phases in various extraction methods, such as the micro solid phase extraction (µ-SPE), needle trap microextraction (NTME) and thin film microextraction (TFME).In the first research, feasibility of the online µ-SPE method using cellulose acetate (CA) fibers was investigated. For this purpose, CA fibers were prepared by electrospinning technique and then placed into µ-SPE cartridge. With this method, it was possible to simultaneously extract the drug compounds in the urine and plasma samples. The enrichment factor and limits of detection (LODs) were obtained in the range of 194-210 and 1.0-2.4 μg L-1,... 

    Evaluation of cellular attachment and proliferation on different surface charged functional cellulose electrospun nanofibers

    , Article Carbohydrate Polymers ; Volume 207 , 2019 , Pages 796-805 ; 01448617 (ISSN) Golizadeh, M ; Karimi, A ; Gandomi Ravandi, S ; Vossoughi, M ; Khafaji, M ; Joghataei, M. T ; Faghihi, F ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Fabrication and characterization of different surface charged cellulose electrospun scaffolds including cellulose acetate (CA), cellulose, carboxymethyl cellulose (CMC) and quaternary ammonium cationic cellulose (QACC) for biomedical applications have been reported in this research. Several instrumental techniques were employed to characterize the nanofibers. MTT assay and cell attachment studies were also carried out to determine the cytocompatibility, viability and proliferation of the scaffolds. Fabricated CA, cellulose, CMC and QACC nanofibers had 100–600 nm diameter, −9, −1.75, −12.8, + 22 mV surface potential, 2.5, 4.2, 7.2, 7 MPa tensile strength, 122, 320, 515, 482 MPa Young modules,... 

    Synthesis of cellulose acetate/chitosan/SWCNT/Fe3O4/TiO2 composite nanofibers for the removal of Cr(VI), As(V), Methylene blue and Congo red from aqueous solutions

    , Article International Journal of Biological Macromolecules ; Volume 140 , 2019 , Pages 1296-1304 ; 01418130 (ISSN) ZabihiSahebi, A ; Koushkbaghi, S ; Pishnamazi, M ; Askari, A ; Khosravi, R ; Irani, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    The potential of electrospun cellulose acetate/chitosan/single walled carbon nanotubes/ferrite/titanium dioxide (CA/chitosan/SWCNT/Fe3O4/TiO2) nanofibers was investigated for the removal of Cr(VI), As(V), Methylene blue and Congo red from aqueous solutions via the adsorption and photocatalytic reduction processes. The properties of synthesized SWCNT/Fe3O4/TiO2 and fibers were characterized using TEM, SEM, FTIR, XRD, TGA and BET analysis. In adsorption process, the influence of adsorbent type including SWCNT to Fe3O4 ratio, TiO2 to SWCNT/Fe3O4 ratio and SWCNT/Fe3O4/TiO2 concentration as well as the adsorption parameters including pH, contact time, and initial concentration of adsorbates on... 

    Concurrent photocatalytic degradation and filtration with bi-plasmonic TiO2 for wastewater treatment

    , Article Micro and Nano Letters ; Volume 16, Issue 3 , 2021 , Pages 194-202 ; 17500443 (ISSN) Anvari, A ; Amoli Diva, M ; Sadighi Bonabi, R ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    A new photocatalytic filtration membrane was prepared by grafting of Ag–Au bi-plasmonic shell-on TiO2@Fe3O4 nanoparticles as a magnetically-separable heterogeneous photocatalyst to a poly acrylic acid-modified cellulose acetate membrane for decomposition and removal of methyl orange as a model pollutant from textile wastewater samples. Eight photocatalysts including five Au NPs-modified TiO2@Fe3O4 NPs and three Ag-Au bi-plasmonic NPs-decorated TiO2@Fe3O4 NPs with different shell thickness were synthesized and characterized by TEM, UV–vis, and SEM techniques and their photocatalytic activity was assessed using two radiation sources. After selection of optimum photocatalyst and modification of...