Loading...
Search for: cavitation-bubble
0.003 seconds

    Cavitation passive control on immersed bodies

    , Article Journal of Marine Science and Application ; Volume 16, Issue 1 , 2017 , Pages 33-41 ; 16719433 (ISSN) Javadi, K ; Dorostkar, M. M ; Katal, A ; Sharif University of Technology
    Harbin Engineering University  2017
    Abstract
    This paper introduces a new idea of controlling cavitation around a hydrofoil through a passive cavitation controller called artificial cavitation bubble generator (ACG). Cyclic processes, namely, growth and implosion of bubbles around an immersed body, are the main reasons for the destruction and erosion of the said body. This paper aims to create a condition in which the cavitation bubbles reach a steady-state situation and prevent the occurrence of the cyclic processes. For this purpose, the ACG is placed on the surface of an immersed body, in particular, the suction surface of a 2D hydrofoil. A simulation was performed with an implicit finite volume scheme based on a SIMPLE algorithm... 

    Theoretical and Practical Effects of Ultrasound on Desulfurization Process

    , M.Sc. Thesis Sharif University of Technology Makarem, Mohammad Amin (Author) ; Ghotbi, Siroos (Supervisor) ; Taghikhani, Vahid (Co-Advisor) ; Badakhshan, Amir (Co-Advisor)
    Abstract
    In past three decades, use of crude oil’s derivatives increased dramatically. The critical environmental condition of today’s world, which majorly caused by unclean fuels, forces governments to legislate new rules to increase quality of fuels. These rules force refinery industries to produce clean fuels. One of the main processes in producing clean fuels is Desulfurization process. For fuel desulfurization there are different kinds of processes like HydroDesulfruization, Oxidative Desulfurization, Bio-desulfurization, etc. From these processes Hydro-desulfurization is the conventional process for desulfurization. Because of significant problems of this process, like high operational cost,... 

    Investigation of the effect of cavitation passive control on the dynamics of unsteady cloud cavitation

    , Article Applied Mathematical Modelling ; Volume 64 , 2018 , Pages 333-356 ; 0307904X (ISSN) Kadivar, E ; Moctar, O. E ; Javadi, K ; Sharif University of Technology
    Abstract
    We present an efficient method to control the evolution of unsteady cloud cavitation around the CAV2003 benchmark hydrofoil using passive cavitation controllers so called cavitation-bubble generators (CGs). Cavitation control may be used in many engineering applications, particularly in the marine and turbo machinery field. We first simulated the unsteady cavitating flow around the hydrofoil without CGs using a Partially-averaged Navier–Stokes (PANS) method, and validated the acquired results against experimental data. We coupled the turbulence model with a mass transfer model and successfully implemented it in the open source toolbox OpenFOAM. Next, we studied the effect of different CGs on... 

    Stabilization of cloud cavitation instabilities using Cylindrical Cavitating-bubble Generators (CCGs)

    , Article International Journal of Multiphase Flow ; Volume 115 , 2019 , Pages 108-125 ; 03019322 (ISSN) Kadivar, E ; el Moctar, O ; Javadi, K ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Unsteady cloud cavitation phenomenon is an important subject due to its undesirable effects in various applications such as ship propeller, rudder and hydraulic machinery systems. We present an efficient passive control method to control the cavitation instabilities which may be caused by the shedding of cavity structures in the vicinity of the solid surface of an immersible body. We proposed a passive control method so called Cylindrical Cavitating-bubble Generators (CCGs) on the surface of a benchmark hydrofoil and analyzed the effects of this passive controller on the dynamics of the unsteady cloud cavitation. First we modeled the unsteady cavitating flow around the hydrofoil without CCGs... 

    Simulation of Behavior of a Single Cavitating Bubble Near Solid Boundariesby solvingTwophase Navier-Stokes Equations with a Central Difference Finite Volume Method

    , M.Sc. Thesis Sharif University of Technology Mortezazadeh Dorostkar, Mohammad (Author) ; Hejranfar, Kazem (Supervisor)
    Abstract
    In the present work, the deformation and collapse of a single cavitating bubble near solid boundaries is simulated by solving the preconditioned, homogenous, multiphaseNavier-Stokes equations. Up to now, all studies in the literature performed by the volume of fluid (VOF)approach to capture the bubble surface have been based on the pressure-based category in which the flow variables are calculated through solving the Poisson equation. Here, the density-based category is applied and the solution methodology is based on the artificial compressibility approach. The compressible form of the Navier-Stokes equations is applied inside the bubble and the liquid phase is assumed to be incompressible.... 

    Numerical Simulation of Liquid Jet and Bubble Collapse Interaction near the Wall

    , M.Sc. Thesis Sharif University of Technology Heshmati, Ehsan (Author) ; Javadi, Khodayar (Supervisor)
    Abstract
    Bubble collapse near a rigid wall with rapid and non-spherical compression of the internal gas can lead to destructive and unfavorable effects such as erosion, noise, and a fall-off in the performance of devices. Despite the fact that several investigations on this phenomena have been carried out under various conditions, studies indicate that the collapse of a single cavitation bubble next to the liquid jet injected from the wall's side and their interaction have not been studied so far. To achieve this goal, the present study deals with the three-dimensional simulation of the two-phase flow field from the Eulerian point of view. OpenFOAM has been used to solve the equations of conservation... 

    Role of thermal conduction in single-bubble cavitation

    , Article Physics Letters, Section A: General, Atomic and Solid State Physics ; Volume 372, Issue 8 , 2008 , Pages 1283-1287 ; 03759601 (ISSN) Moshaii, A ; Rezaei Nasirabad, R ; Imani, Kh ; Silatani, M ; Sadighi Bonabi, R ; Sharif University of Technology
    Elsevier  2008
    Abstract
    Effect of thermal conduction on radiation from a single cavitating bubble has been studied in a hydrochemical framework including variation of heat conductivity of noble gases up to 2500 K. Results of numerical simulation show that thermal conductivity plays an important role in determining ultimate cavitation temperature. Higher thermal conductivity of lighter noble gases causes to more thermal dissipation during the bubble collapse, leading to a lower peak temperature. Moreover, at the same driving conditions, radius of light emitting region is greater for heavier noble bubbles. Therefore, sonoluminescence radiation is more intensive from heavier noble gases. Phase diagrams of... 

    Analysis of the Ultrasonic Cavitation on the Cancer Tumors

    , M.Sc. Thesis Sharif University of Technology Maleki Birjandi, Morteza (Author) ; Ahmadian, Mohammad Taghi (Supervisor) ; Fallah Rajabzadeh, Famida (Supervisor)
    Abstract
    A complete understanding of high-intensity focused ultrasound-induced temperature changes in tissue requires insight into all potential mechanisms for heat deposition. Applications of therapeutic ultrasound often utilize acoustic pressures capable of producing cavitation activity. Recognizing the ability of bubbles to transfer acoustic energy into heat generation, a study of the role bubbles play in tissue hyperthermia becomes necessary. These bubbles are typically less than 50μm.
    This dissertation examines the contribution of bubbles and their motion to an enhanced eating effect observed in a tissue-mimicking phantom. A series of experiments established a lationship between bubble... 

    How important is the liquid bulk viscosity effect on the dynamics of a single cavitation bubble?

    , Article Ultrasonics Sonochemistry ; Volume 49 , 2018 , Pages 47-52 ; 13504177 (ISSN) Nazari Mahroo, H ; Pasandideh, K ; Navid, H. A ; Sadighi Bonabi, R ; Sharif University of Technology
    Abstract
    The influence of liquid bulk viscosity on the dynamics of a single cavitation bubble is numerically studied via Gilmore model with a new modified boundary condition at bubble interface. In order to more accurately describe the interior gas thermodynamics, a hydrochemical model is used. The numerical results for an argon bubble in water and aqueous H2SO4 show that including the liquid bulk viscosity slightly affects the bubble dynamics in collapse phase. This effect becomes significant only at high ultrasonic amplitudes and high viscosities. Moreover, the maximum pressure value inside the bubble is much more influenced than the maximum temperature. This finding lends support to results of...