Loading...
Search for: capillary-pressure-curves
0.009 seconds

    An approach for the estimation of dynamic imbibition capillary pressure curves

    , Article Energy Sources, Part A: Recovery, Utilization and Environmental Effects ; Vol. 36, issue. 9 , Dec , 2010 , p. 1007-1017 ; ISSN: 15567036 Shojaadini Ardakany, M ; Shadizadeh, S.R ; Masihi, M ; Kharrat, R ; Ghazanfari, M. H ; Sharif University of Technology
    Abstract
    Capillary pressure is one of the most important parameters for reservoir engineering studies. Although different experimental methods are devised to measure capillary pressure, these methods do not represent the physics of fluid flow, which happens at reservoir conditions. Thus, it is attempted to extract the capillary pressure from spontaneous imbibition data, the common mechanism of oil production in water wet porous media. In this work, a new approach is developed to obtain the imbibition capillary pressure curve by using spontaneous water imbibition data in oil-water-rock systems. Comparison of calculated imbibition capillary pressure curves by the new approach with experimental values... 

    Numerical simulation of surfactant flooding in darcy scale flow

    , Article Petroleum Science and Technology ; Vol. 32, Issue. 11 , 2014 , Pages 1365-1374 ; ISSN: 10916466 Morshedi, S ; Foroughi, S ; Beiranvand, M. S ; Sharif University of Technology
    Abstract
    One of the methods that is used nowadays in enhanced oil recovery is surfactant flooding. The main mechanisms of surfactant flooding in reservoir consist of reduction of interfacial tension between water and oil and modification of rock wettability. In this study, the authors simulate the surfactant injection process in Darcy scale and in one-dimensional, multicomponent, multiphase state, and effects of physical phenomena such as adsorption, dispersion, convection, and exchange between fluids and solids are considered. Wettability alteration of reservoir rock due to presence of surfactant in injected fluid is detected in relative permeability and capillary pressure curves. First, the authors... 

    The impact of surfactants on wettability change and level of water imbibition in relation to EOR in carbonate reservoirs

    , Article Petroleum Science and Technology ; Volume 31, Issue 20 , 2013 , Pages 2098-2109 ; 10916466 (ISSN) Zangeneh Var, A ; Bastani, D ; Badakhshan, A ; Sharif University of Technology
    2013

    Simultaneous calculation of pore size distribution, capillary pressure, and relative permeability from injection-fall off-production test data

    , Article Special Topics and Reviews in Porous Media ; Vol. 5, issue. 1 , 2014 , p. 41-51 Keshavarzi, B ; Jamshidi, S ; Salehi, S ; Sharif University of Technology
    Abstract
    This work concerns simultaneous determination of relative permeability, capillary pressure, pore size distribution (PSD), and residual oil saturation data by optimization of well testing data, and introduces a new capillary pressure relationship, based on the Weibull distribution function, for direct determination of the PSD function from capillary pressure parameters. Three consecutive injection, fall off, and production well tests are performed on a predefined synthetic reservoir through simulation, and an optimization algorithm is used to find the parameters of relative permeability and capillary pressure curves as well as the value of residual oil saturation. The PSD function is also... 

    Relative permeability and capillary pressure curves for low salinity water flooding in sandstone rocks

    , Article Journal of Natural Gas Science and Engineering ; Volume 25 , July , 2015 , Pages 30-38 ; 18755100 (ISSN) Shojaei, M. J ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Recently much attention has been paid to the use of low salinity water (LSW) as an enhanced oil recovery fluid. The change observed in recovery factor during LSW flooding is induced from changes in relative permeability and capillary pressure when different levels of salinity are used. However, a few researchers tried to evaluate how macroscopic flow functions depend on the salinity of the injected water. To this end, a series of oil displacement by water was performed on a sandstone rock aged with crude oil in the presence of connate water. The capillary pressure and relative permeability curves are evaluated from inverse modeling of the obtained pressure drop and oil production data. Then,... 

    Characterization of three-phase flow in porous media using the ensemble Kalman filter

    , Article Scientia Iranica ; Volume 24, Issue 3 , 2017 , Pages 1281-1301 ; 10263098 (ISSN) Jahanbakhshi, S ; Pishvaie, M. R ; Bozorgmehry Boozarjomehry, R ; Sharif University of Technology
    Sharif University of Technology  2017
    Abstract
    In this study, the ensemble Kalman filter is used to characterize threephase flow in porous media through simultaneous estimation of three-phase relative permeabilities and capillary pressures from production data. Power-law models of relative permeability and capillary pressure curves are used and the associated unknown parameters are estimated by assimilating the measured historical data. The estimation procedure is demonstrated on a twin numerical setup with two different scenarios, in which a synthetic 2D reservoir under three-phase flow is considered. In the first scenario, all the endpoints are assumed to be known and only the shape factors are estimated during the assimilation... 

    Modeling of capillary pressure in horizontal rough-walled fractures in the presence of liquid bridges

    , Article Journal of Petroleum Science and Engineering ; Volume 185 , 2020 Harimi, B ; Ghazanfari, M. H ; Masihi, M ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Capillary continuity between adjacent matrix blocks through formation of liquid bridge controls the recovery factor of gravity drainage process in fractured reservoirs. However, stability of liquid bridges as well as related capillary pressure in horizontal rough fractures is not well discussed in the available literature. In this work, new models of rough-walled fracture are developed and the role of roughness size and frequency on formation of liquid bridge and fracture capillary pressure are investigated. The Young-Laplace equation is numerically solved to characterize the liquid bridge formed in the proposed models of rough fractures. Critical fracture aperture for a range of liquid... 

    Applying flow zone index approach and artificial neural networks modeling technique for characterizing a heterogeneous carbonate reservoir using dynamic data: Case Study of an Iranian reservoir

    , Article Society of Petroleum Engineers - Trinidad and Tobago Energy Resources Conference 2010, SPE TT 2010, 27 June 2010 through 30 June 2010 ; Volume 2 , June , 2010 , Pages 677-690 ; 9781617388859 (ISBN) Shahvar, M. B ; Kharrat, R ; Matin, M ; Sharif University of Technology
    2010
    Abstract
    Although static characterization of reservoirs is an inevitable part of any reservoir studies, the most robust models of the reservoirs can be obtained through integrating static and dynamic data. The following study which is done in a heterogeneous carbonate reservoir utilizes the capillary pressure and relative permeability data to verify the task of static rock typing and investigate the role of hydraulic units in capillary pressure and relative permeability modeling. For this purpose, at first, various rock typing techniques are applied to the field data to seek the best method which has the most consistency with capillary pressure curves. Using Desouky method which is based on hydraulic... 

    Model development for MEOR process in conventional non-fractured reservoirs and investigation of physico-chemical parameter effects

    , Article Chemical Engineering and Technology ; Volume 31, Issue 7 , 2008 , Pages 953-963 ; 09307516 (ISSN) Behesht, M ; Roostaazad, R ; Farhadpour, F ; Pishvaei, M. R ; Sharif University of Technology
    2008
    Abstract
    A three-dimensional multi-component transport model in a two-phase oil-water system was developed. The model includes separated terms to account for the dispersion, convection, injection, growth and death of microbes, and accumulation. For the first time, effects of both wettability alteration of reservoir rock from oil wet to water wet and reduction in interfacial tension (IFT) simultaneously on relative permeability and capillary pressure curves were included in a MEOR simulation model. Transport equations were considered for the bacteria, nutrients, and metabolite (bio-surfactant) in the matrix, reduced interfacial tension on phase trapping, surfactant and polymer adsorption, and effect...