Loading...
Search for: calcium-compounds
0.006 seconds

    Study of scratch resistance in homo- and co-polypropylene filled with nanometric calcium carbonate

    , Article Materials Science and Engineering A ; Volume 445-446 , 2007 , Pages 526-536 ; 09215093 (ISSN) Zokaei, S ; Lesan Khosh M., R ; Bagheri, R ; Sharif University of Technology
    2007
    Abstract
    In this study, homo- and co-polypropylene were modified by nanometric calcium carbonate and the effect of additive on scratch resistance was evaluated. Results of this study show that the length of scratch curvature can be considered as an acceptable criterion to evaluate the scratch resistance of polymers. Also, it was found that addition of calcium carbonate to homo-polypropylene increases scratch resistance of this polymer, but its effect on co-polypropylene is insignificant. Based on the results of this work, one may claim that incorporation of nanometric particles with good adhesion to the matrix and well dispersion might be effective in enhancement of scratch resistance. Formation of... 

    Effect of salts and their interaction with ingenious surfactants on the interfacial tension of crude oil/ionic solution

    , Article Chinese Journal of Chemical Engineering ; Volume 28, Issue 1 , January , 2020 , Pages 224-235 Lashkarbolooki, M ; Parvizi, R ; Ayatollahi, S ; Ghaseminejad Raeeni, E ; Sharif University of Technology
    Chemical Industry Press  2020
    Abstract
    Understanding the roles of asphaltene and resin as natural surfactants existed in crude oil can enlighten contradicting reported results regarding interfacial tension (IFT) of crude oil/aqueous solution as a function of salinity and ion type. In this way, this study is aimed to investigate the effect of these natural surface active agents on IFT of with special focus on SO42− anion and Mg2+ cation. Two different synthetic oil solutions of 8 wt% of the extracted asphaltene and resin dissolved in toluene are prepared, and then IFT values are measured. After that, the obtained results are compared with the IFT of intact crude oil in contact with the same saline solutions examined in the... 

    Anaerobic degradation of molasses stillage in a pilot UASB reactor

    , Article Scientia Iranica ; Volume 12, Issue 3 , 2005 , Pages 255-261 ; 10263098 (ISSN) Hashemian, S. J ; Torkian, A ; Hakimjavadi, M ; Azimi, E ; Sharif University of Technology
    Sharif University of Technology  2005
    Abstract
    The feasibility of a mesophilic anaerobic treatment of an alcohol distillery wastewater (beet molasses stillage) was studied in a 1300 I Upflow Anaerobic Sludge Blanket (UASB) reactor for a period of 180 days. The system was seeded with 600 L of mesophilic anaerobic sludge harvested from the bottom of a dairy anaerobic lagoon. Nutrients were added to acidified effluent and after adjusting the pH in an equalization tank, the system was fed with a diluted effluent containing COD in the range of 1000-11000 mg/L at 30°C. Initially, the system had an OLR of 1 kg COD m-3 d-1 and upflow velocity was maintained at 0.6 m/h (HRT= 6 h) throughout the study. A gradual increase in OLR, through increased... 

    Enhanced trichloroethene degradation performance in innovative nanoscale CaO2 coupled with bisulfite system and mechanism investigation

    , Article Separation and Purification Technology ; Volume 278 , 2022 ; 13835866 (ISSN) Sun, Y ; Sun, X ; Ali, M ; Shan, A ; Idrees, A ; Yang, C ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    The effect of bisulfite (HSO3–) in nCaO2/Fe(III)/HSO3– system on improving HO• generation and trichloroethene (TCE) removal was innovatively reported. The enhancement mechanism of HSO3– for TCE removal in nCaO2/Fe(III)/HSO3– system was caused not only by the complexing and reducing effects on promoting the conversion of Fe(III) to Fe(II), but also due to the reaction with O2 in water to produce SO4–• for accelerating TCE degradation. A double effect of nCaO2 as an oxidant source to generate HO• and as a O2 source to promote SO4–• generation was revealed. A pseudo-second-order kinetic model of TCE removal was determined and 94.6% TCE degradation was achieved within 60 min at the... 

    Ion-pair extraction-reaction of calcium using Y-shaped microfluidic junctions: An optimized separation approach

    , Article Chemical Engineering Journal ; Volume 334 , 2018 , Pages 2603-2615 ; 13858947 (ISSN) Foroozan Jahromi, P ; Karimi Sabet, J ; Amini, Y ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this research, a continuous microsolvent extraction-reaction was developed for the efficient separation of calcium ion. This study gives a preliminary possible practical application of microfluidic devices in chemical exchange reaction for enrichment of 48Ca stable isotope. For this purpose, in the first stage, the hydrodynamic behavior of two immiscible liquids in a simple Y-shaped microfluidic junction is experimentally investigated, and then ion-pair extraction-reaction of Ca2+ using picric acid as a counter-ion and dicyclohexano-18-crown-6 (DC18C6) as a lipophilic ionophore is studied in this microfluidic and conventional batch method. The impact of main process parameters, including... 

    Investigating injection of low salinity brine in carbonate rock with the assist of works of cohesion and adhesion and spreading coefficient calculations

    , Article Journal of Petroleum Science and Engineering ; Volume 161 , 2018 , Pages 381-389 ; 09204105 (ISSN) Lashkarbolooki, M ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Low salinity (LS) and smart water (SW) flooding processes which receive a great interest as cost-effective and environmental friendly techniques are relatively new enhanced oil recovery methods. Although shifting carbonate surfaces towards a water-wet state is the main mechanism behind these methods, effects of controlling factors (for instance: ion type or salinity) are already remained unsettled. In this regard, the effects of sulfate ion types (i.e. Na2SO4, MgSO4 and CaSO4) and their concentrations (i.e. 0–45,000 ppm) on wettability alteration are investigated using contact angle (CA) measurement technique. In addition, work of cohesion, work of adhesion and spreading coefficient of all... 

    Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review

    , Article Polymer Reviews ; Volume 58, Issue 1 , 2018 , Pages 164-207 ; 15583724 (ISSN) Hajiali, F ; Tajbakhsh, S ; Shojaei, A ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    Polycaprolactone (PCL) is a bioresorbable and biocompatible polymer that has been widely used in long-term implants and controlled drug release applications. However, when it comes to tissue engineering, PCL suffers from some shortcomings such as slow degradation rate, poor mechanical properties, and low cell adhesion. The incorporation of calcium phosphate-based ceramics and bioactive glasses into PCL has yielded a class of hybrid biomaterials with remarkably improved mechanical properties, controllable degradation rates, and enhanced bioactivity that are suitable for bone tissue engineering. This review presents a comprehensive study on recent advances in the fabrication and properties of... 

    Synthesis of composite coating containing tio2 and ha nanoparticles on titanium substrate by ac plasma electrolytic oxidation

    , Article Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science ; Volume 50, Issue 7 , 2019 , Pages 3310-3319 ; 10735623 (ISSN) Soleymani Naeini, M ; Ghorbani, M ; Chambari, E ; Sharif University of Technology
    Springer Boston  2019
    Abstract
    In this study, biocompatible ceramic layers containing TiO2 and hydroxyapatite (HA) nanoparticles (TiO2/HA) were deposited on pure commercial titanium (Grade 2) by using plasma electrolytic oxidation and AC power supply. The coating process was carried out in five different solutions for various times at a current density of 500 mA cm−2. To achieve the optimum conditions for thickness and microstructure, the coating process was conducted in solutions with a 3 g L−1 concentration of HA nanoparticles. FESEM, XRD, and FTIR results showed that HA nanoparticles were successfully incorporated into the pores of the layer. Furthermore, the corrosion behavior of the coating layers in the simulated... 

    Mechanical and chemical pressure effects on the AeFe 2 As 2 (Ae = Ba, Sr, Ca) compounds: Density functional theory

    , Article Computational Materials Science ; Volume 160 , 2019 , Pages 233-244 ; 09270256 (ISSN) Aghajani, M ; Hadipour, H ; Akhavan, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    We have studied the pressure-induced structural, magnetic and electronic properties of AeFe 2 As 2 (Ae = Ba, Sr, Ca) compounds in the framework of density functional theory within the GGA-PBE method. The effects of chemical pressure generated by Sr and Ca substitutions in BaFe 2 As 2 have been investigated. We have found a magnetic transition at the same primitive unit cell volume, around 81 Å 3 for the (Ba⧹Ca)Fe 2 As 2 compounds, which predicts a magnetic transition pressure of 12 GPa for SrFe 2 As 2 . The structural parameters of FeAs 4 tetrahedra are obtained after ionic relaxation and compared with the existing experimental results. The change of these internal parameters is ascribed to... 

    Microscopic insight into kinetics of inorganic scale deposition during smart water injection using dynamic quartz crystal microbalance and molecular dynamics simulation

    , Article Industrial and Engineering Chemistry Research ; Volume 59, Issue 2 , 2020 , Pages 609-619 Mirzaalian Dastjerdi, A ; Kargozarfard, Z ; Najafi, B ; Taghikhani, V ; Ayatollahi, S ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    Inorganic scale deposition has been found to affect many industrial processes, including water injection into the oil reservoirs. The incompatibility of high sulfate ion content of seawater with formation water containing calcium ions results in formation damage and production decline. In this study, several simultaneous techniques are utilized for qualitative and quantitative analyses of calcium sulfate scale to get more insight into the formation damage during smart water flooding at micro and nanoscales. In the experimental section, calcium sulfate deposition due to the mixing of the formation water and seawater samples was investigated using the dynamic quartz crystal microbalance... 

    A validated reduced-order dynamic model of nitric oxide regulation in coronary arteries

    , Article Computers in Biology and Medicine ; Volume 139 , 2021 ; 00104825 (ISSN) Moshfegh, H ; Tajeddini, F ; Pakravan, H. A ; Mahzoon, M ; Azadi Yazdi, E ; Bazrafshan Drissi, H ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Nitric Oxide (NO) provides myocardial oxygen demands of the heart during exercise and cardiac pacing and also prevents cardiovascular diseases such as atherosclerosis and platelet adhesion and aggregation. However, the direct in vivo measurement of NO in coronary arteries is still challenging. To address this matter, a mathematical model of dynamic changes of calcium and NO concentration in the coronary artery was developed for the first time. The model is able to simulate the effect of NO release in coronary arteries and its impact on the hemodynamics of the coronary arterial tree and also to investigate the vasodilation effects of arteries during cardiac pacing. For these purposes, flow... 

    The effect of pore morphology and agarose coating on mechanical properties of tricalcium phosphate scaffolds

    , Article International Journal of Applied Ceramic Technology ; Volume 19, Issue 5 , 2022 , Pages 2713-2722 ; 1546542X (ISSN) Gorgin Karaji, Z ; Bagheri, R ; Amirkhani, S ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Three-dimensional biocompatible porous structures can be fabricated using different methods. However, the biological and mechanical behaviors of scaffolds are the center of focus in bone tissue engineering. In this study, tricalcium phosphate scaffolds with similar porosity contents but different pore morphologies were fabricated using two different techniques, namely, the replica method and the pore-forming agent method. The samples fabricated using the pore-forming agent showed more than two times higher compressive and bending strengths and more than three times higher compressive moduli. Furthermore, a thin layer of agarose coating improved the compressive and bending strength of both... 

    Effect of Cu2+ ion on biological performance of nanostructured uorapatite doped with copper

    , Article Scientia Iranica ; Volume 24, Issue 6 , 2017 , Pages 2845-2855 ; 10263098 (ISSN) Nikonam Mofrad, R ; Sadrnezhaad, S. K ; Vahdati Khaki, J ; Sharif University of Technology
    Abstract
    Nanostructured copper-doped uorapatite (Cux.Ca(10X).(PO4)6.F2) having crystallite sizes of 19, 29, and 34 nm at x = 0:9, 0.4, and 0.0, respectively, was synthesized by planetary ball milling of CaO, P2O5, CaF2, and CuO powders. Specifications of the products were determined by Fourier-transform infrared spectroscopy, eld emission scanning electron microscopy, transmission electron microscopy, and X-ray di raction analyses. In-vitro studies and Mossman's Tetrazole Test (MTT) assays were also conducted by incubating Cux.Ca(10X).(PO6).F2 powder into Kokubo's Simulated Body Fluid (SBF) and against BT-20 cell, respectively, to determine bioactivity and biocompatibility of the materials.... 

    The study of electrodeposition of hydroxyapatite-ZrO2-TiO2 nanocomposite coatings on 316 stainless steel

    , Article Surface and Coatings Technology ; Volume 339 , 2018 , Pages 199-207 ; 02578972 (ISSN) Poorraeisi, M ; Afshar, A ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    In this research pure HA and HA-ZrO2-TiO2 nanocomposite coatings (named HZT coatings) were successfully synthesized by merging two usual electroplating methods. In order to deposit pure HA coating a particular saline solution of Calcium and Phosphate was prepared with pH = 4.2, thermodynamically rich of hydroxyapatite. XRD and FTIR studies prove the synthesis of hydroxyapatite during electrodeposition process. To synthesize composite coatings with rational molar ratios of composite agents to matrix, two different concentrations of ZrO2-TiO2 suspensions were added to Ca-P solution at the pH = 4.2 and electrodeposition process done similar to pure HA sample. XRD, FTIR and FESEM (EDS) analyses... 

    Synthesis and characterization of mixed–metal oxide nanoparticles (cenio3, cezro4, cecao3) and application in adsorption and catalytic oxidation–decomposition of asphaltenes with different chemical structures

    , Article Petroleum Chemistry ; Volume 60, Issue 7 , 2020 , Pages 731-743 Dehghani, F ; Ayatollahi, S ; Bahadorikhalili, S ; Esmaeilpour, M ; Sharif University of Technology
    Pleiades Publishing  2020
    Abstract
    Abstract: This study investigates the catalytic activity of mixed–metal oxide nanoparticles with different surface acidities on asphaltene adsorption followed by catalytic oxidation–decomposition. Three different types of mixed–metal oxide nanoparticles (CeNiO3, CeCaO3 and CeZrO4) were synthesized, and their size, structure, and acid properties were characterized by field–emission scanning electron microscopy (FE–SEM), energy-dispersive X-ray spectroscopy (EDX), the high–resolution transmission electron microscopy (HR-TEM), X-ray powder diffraction (XRD), Brunauer-Emmett-Teller (BET) surface area measurement and ammonia temperature-programmed desorption (NH3–TPD). Asphaltenes were extracted... 

    Degradation of BTEX in groundwater by nano-CaO2 particles activated with L-cysteine chelated Fe(III): enhancing or inhibiting hydroxyl radical generation

    , Article Water Supply ; Volume 21, Issue 8 , 2021 , Pages 4429-4441 ; 16069749 (ISSN) Sun, X ; Ali, M ; Cui, C ; Lyu, S ; Sharif University of Technology
    IWA Publishing  2021
    Abstract
    The simultaneous oxidation performance of benzene, toluene, ethylbenzene, and xylene (BTEX) by nanoscale calcium peroxide particles (nCaO2) activated with ferric ions (Fe(III)) and the mechanism of the enhancement of BTEX degradation by L-cysteine (L-cys) were investigated. The batch experimental results showed that the nCaO2/Fe(III)/L-cys process was effective in the destruction of BTEX in both ultrapure water and actual groundwater. A proper amount of L-cys could enhance BTEX degradation due to the promotion of Fe(II)/Fe(III) redox cycles by the participation of L-cys, but an excessive presence of L-cys would cause inhibition. Adding 1.0 mM L-cys to the nCaO2/Fe(III) system, the... 

    Advancement in Fenton-like reactions using PVA coated calcium peroxide/FeS system: Pivotal role of sulfide ion in regenerating the Fe(II) ions and improving trichloroethylene degradation

    , Article Journal of Environmental Chemical Engineering ; Volume 9, Issue 1 , 2021 ; 22133437 (ISSN) Ali, M ; Zhang, X ; Idrees, A ; Tariq, M ; Danish, M ; Farooq, U ; Shan, A ; Jiang, X ; Huang, J ; Lyu, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study demonstrated the prolonged benefits of polyvinyl-coated calcium peroxide (PVA@CP) in Fe(II)/nFeS mediated Fenton-like reaction. PVA@CP was prepared by a coating of PVA on calcium peroxide (CP) and synthesized nano-sized iron sulfide (nFeS) was characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopy (EDS) elemental mapping, X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES) and Fourier transmission infrared (FTIR) techniques. Trichloroethylene (TCE) degradation in various oxic environments (H2O2, CP, or... 

    Advancement in Fenton-like reactions using PVA coated calcium peroxide/FeS system: Pivotal role of sulfide ion in regenerating the Fe(II) ions and improving trichloroethylene degradation

    , Article Journal of Environmental Chemical Engineering ; Volume 9, Issue 1 , 2021 ; 22133437 (ISSN) Ali, M ; Zhang, X ; Idrees, A ; Tariq, M ; Danish, M ; Farooq, U ; Shan, A ; Jiang, X ; Huang, J ; Lyu, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    This study demonstrated the prolonged benefits of polyvinyl-coated calcium peroxide (PVA@CP) in Fe(II)/nFeS mediated Fenton-like reaction. PVA@CP was prepared by a coating of PVA on calcium peroxide (CP) and synthesized nano-sized iron sulfide (nFeS) was characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopy (EDS) elemental mapping, X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma optical emission spectroscopy (ICP-OES) and Fourier transmission infrared (FTIR) techniques. Trichloroethylene (TCE) degradation in various oxic environments (H2O2, CP, or... 

    Unveiling the catalytic ability of carbonaceous materials in Fenton-like reaction by controlled-release CaO2 nanoparticles for trichloroethylene degradation

    , Article Journal of Hazardous Materials ; Volume 416 , 2021 ; 03043894 (ISSN) Ali, M ; Tariq, M ; Sun, Y ; Huang, J ; Gu, X ; Ullah, S ; Nawaz, M. A ; Zhou, Z ; Shan, A ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Carbonaceous materials (CMs) have been applied extensively for enhancing the catalytic performance of environmental catalysts, however, the self-catalytic mechanism of CMs for groundwater remediation is rarely investigated. Herein, we unveiled the catalytic ability of various CMs via Fe(III) reduction through polyvinyl alcohol-coated calcium peroxide nanoparticles (PVA@nCP) for trichloroethylene (TCE) removal. Among selected CMs (graphite (G), biochar (BC) and activated carbon (AC)), BC and AC showed enhancement of TCE removal of 89% and 98% via both adsorption and catalytic degradation. BET and SEM analyses showed a higher adsorption capacity of AC (27.8%) than others. The generation of... 

    Unveiling the catalytic ability of carbonaceous materials in Fenton-like reaction by controlled-release CaO2 nanoparticles for trichloroethylene degradation

    , Article Journal of Hazardous Materials ; Volume 416 , 2021 ; 03043894 (ISSN) Ali, M ; Tariq, M ; Sun, Y ; Huang, J ; Gu, X ; Ullah, S ; Nawaz, M. A ; Zhou, Z ; Shan, A ; Danish, M ; Lyu, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Carbonaceous materials (CMs) have been applied extensively for enhancing the catalytic performance of environmental catalysts, however, the self-catalytic mechanism of CMs for groundwater remediation is rarely investigated. Herein, we unveiled the catalytic ability of various CMs via Fe(III) reduction through polyvinyl alcohol-coated calcium peroxide nanoparticles (PVA@nCP) for trichloroethylene (TCE) removal. Among selected CMs (graphite (G), biochar (BC) and activated carbon (AC)), BC and AC showed enhancement of TCE removal of 89% and 98% via both adsorption and catalytic degradation. BET and SEM analyses showed a higher adsorption capacity of AC (27.8%) than others. The generation of...