Loading...
Search for: calcite-surface
0.009 seconds

    Molecular dynamics simulation investigation of hexanoic acid adsorption onto calcite (1014)surface

    , Article Fluid Phase Equilibria ; Volume 387 , 2015 , Pages 24-31 ; 03783812 (ISSN) Ghatee, M. H ; Koleini, M. M ; Ayatollahi, S ; Sharif University of Technology
    Abstract
    In this paper we report the results of classical molecular dynamics (MD) simulation of hexanoic acid adsorption on calcite (101-4) surface plane using Pavese and AMBER force fields for calcite and hexanoic acid, respectively. Pair correlation function, strictly suggests a well-structured adsorption. Density profile indicates the adsorption occurs through double-bonded O atom of the acid head group by direct interaction with Ca atom at calcite surface. Adsorption orientation of H and double-bonded O atoms was found to be as lock and key with respect to calcite surface Ca and O atoms, facilitating an effective adsorption. Adsorption time evolution indicates that O atom adsorption is... 

    An atomistic insight into the implications of ion-tuned water injection in wetting preferences of carbonate reservoirs

    , Article Journal of Molecular Liquids ; Volume 293 , 2019 ; 01677322 (ISSN) Koleini, M.M ; Badizad, M. H ; Ghatee, M. H ; Ayatollahi, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    The efficiency of water flooding methods is known to improve by applying ion-tuned water injection. Although there is a consensus that such improvement happens through reversing reservoir wettability characteristics to more water-wet state, the true impact of ions is still ambiguous among contradictory debates. The well-known molecular dynamics (MD) simulation techniques would shed light on such ambiguities to gain deep atomic-scale understanding of the process. Results from MD simulations show that the presence of Na+ and Cl¯ ions leads to the formation of an electrical double layer in adjacency of calcite surface while Mg2+ ions dominantly make complexes with hydrocarbons throughout the... 

    Experimental investigation of dynamic asphaltene adsorption on calcite packs: The impact of single and mixed-salt brine films

    , Article Canadian Journal of Chemical Engineering ; Volume 97, Issue 7 , 2019 , Pages 2028-2038 ; 00084034 (ISSN) Monjezi, R ; Ghotbi, C ; Jafari Behbahani, T ; Bakhshi, P ; Sharif University of Technology
    Wiley-Liss Inc  2019
    Abstract
    In this study, the dynamic adsorption of asphaltene on a calcite surface is investigated. This study investigates the effect of mixed-salt brines on asphaltene adsorption. The results of this work can facilitate the understanding of the complex wettability behaviour of carbonate reservoirs. All experiments were performed in porous media, which were sand-packs filled with calcite powder, to study the influence of the type and concentration of salt on adsorption. The experiments were conducted with asphaltene concentration of 500 mg/L for brines of NaCl, Na2SO4, and a mixture of the two at various ionic strengths. In addition, two tests were performed with an asphaltene concentration of 2000... 

    Bonding, structural and thermodynamic analysis of dissociative adsorption of H3O+ ion onto calcite (10 1 ¯ 4) surface: CPMD and DFT calculations

    , Article Journal of Molecular Modeling ; Volume 23, Issue 12 , 2017 ; 16102940 (ISSN) Ghatee, M. H ; Koleini, M. M ; Sharif University of Technology
    Abstract
    We used density functional theory (DFT) and Car-Parrinello molecular dynamics (CPMD) simulation to investigate the adsorption and bond formation of hydronium ion (H3O+) onto a (10 1 ¯ 4) calcite surface. For surface coverage of 25% to 100%, the nature of H3O+ interaction was explored through electron density and energetics in the context of bond critical points. The adsorbate–adsorbent structure was studied by simulation of pair correlation function. The results revealed that dissociation into water molecule(s) and proton(s) complements H3O+ ion(s) adsorbtion. The H2O molecule adsorbs onto the surface via its O atom, and interacts with surface calcium in a closed-shell mode; the H+ ion makes...