Loading...
Search for: blood-oxygenation
0.005 seconds

    Brain activity estimation using EEG-only recordings calibrated with joint EEG-fMRI recordings using compressive sensing

    , Article 13th International Conference on Sampling Theory and Applications, SampTA 2019, 8 July 2019 through 12 July 2019 ; 2019 ; 9781728137414 (ISBN) Ataei, A ; Amini, A ; Ghazizadeh, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Electroencephalogram (EEG) is a noninvasive, low-cost brain recording tool with high temporal but poor spatial resolution. In contrast, functional magnetic resonance imaging (fMRI) is a rather expensive brain recording tool with high spatial and poor temporal resolution. In this study, we aim at recovering the brain activity (source localization and activity-intensity) with high spatial resolution using only EEG recordings. Each EEG electrode records a linear combination of the activities of various parts of the brain. As a result, a multi-electrode EEG recording represents the brain activities via a linear mixing matrix. Due to distance attenuation, this matrix is almost sparse. Using... 

    Simulation of blood oxygenation in capillary membrane oxygenators using modified sulfite solution

    , Article Biophysical Chemistry ; Vol. 195, issue , Dec , 2014 , p. 8-15 Tabesh, H ; Amoabediny, G ; Rasouli, A ; Ramedani, A ; Poorkhalil, A ; Kashefi, A ; Mottaghy, K ; Sharif University of Technology
    Abstract
    Blood oxygenation is the main performance characteristic of capillary membrane oxygenators (CMOs). Handling of natural blood in in vitro investigations of CMOs is quite complex and time-consuming. Since the conventional blood analog fluids (e.g. water/glycerol) lack a substance with an affinity to capture oxygen comparable to hemoglobin's affinity, in this study a novel approach using modified sulfite solution is proposed to address this challenge. The solution comprises sodium sulfite as a component, simulating the role of hemoglobin in blood oxygenation. This approach is validated by OTR (oxygen transfer rate) measured using native porcine blood, in two types of commercially available... 

    A new mathematical approach for detection of active area in human brain fMRI using nonlinear model

    , Article Biomedical Engineering - Applications, Basis and Communications ; Volume 22, Issue 5 , 2010 , Pages 409-418 ; 10162372 (ISSN) Taalimi, A ; Fatemizadeh, E ; Sharif University of Technology
    Abstract
    Functional magnetic resonance imaging (fMRI) is widely-used for detection of the brain's neural activity. The signals and images acquired through this imaging technique demonstrate the human brain's response to pre-scheduled tasks. Several studies on blood oxygenation level-dependent (BOLD) signal responses demonstrate nonlinear behavior in response to a stimulus. In this paper we propose a new mathematical approach for modeling BOLD signal activity, which is able to model nonlinear and time variant behaviors of this physiological system. We employ the Nonlinear Auto Regressive Moving Average (NARMA) model to describe the mathematical relationship between output signals and predesigned...