Loading...
Search for: biomimetics
0.007 seconds
Total 45 records

    A numerical approach to study the post-yield softening in cellular solids: role of microstructural ordering and cell size distribution

    , Article Acta Mechanica ; Volume 228, Issue 6 , 2017 , Pages 2005-2016 ; 00015970 (ISSN) Goodarzi Hosseinabadi, H ; Bagheri, R ; Altstadt, V ; Sharif University of Technology
    Springer-Verlag Wien  2017
    Abstract
    Designing meta-materials and cellular solids with biomimetic structures has received increasing attention in the past few years partially due to advances in additive manufacturing techniques that have enabled the fabrication of advanced materials with arbitrarily complex microarchitectures and novel functionalities. To impact on this trend, it is essential to develop our understanding about the role of microstructure on mechanical responses of these structures. Although a large literature exists on the general subject, the role of microstructure on the post-yield instability is not yet adequately documented. This research introduces a numerical approach to study the post-yield instability in... 

    Fundamental differences of substrate hydroxylation by high-valent Lron(IV)-Oxo models of cytochrome P450

    , Article Inorganic Chemistry ; Volume 48, Issue 14 , 2009 , Pages 6661-6669 ; 00201669 (ISSN) Tahsini, L ; Bagherzadeh, M ; Nam, W ; De Visser, S. P ; Sharif University of Technology
    2009
    Abstract
    An Iron(lV)-oxo heme(+·) complex (Compound I, Cpd I) is the proposed active species of heme enzymes such as the cytochromes P450 and Is elusive; therefore, biomimetic studies on active site mimics give valuable Insight Into the fundamental properties of heme active species. In this work we present density functional theory (DFT) calculations on substrate hydroxylatlon by a Compound I mimic [FeIV=O(Por+̇)Cl] and its one-electron reduced form [FeIV=O(Por)Cl]-. Thus, recent experimental studies showed that [FeIV =O(Por)Cl]- is able to react with substrates via hydride transfer reactions [Jeong, Y. J.; Kang, Y.; Han, A.-R.; Lee, Y.-M.; Kotani, H.; Fukuzumi, S.; Nam, W. Angew. Chem., Int. Ed.... 

    Single and double stage sintering of mechanically alloyed powder for nanostructured Ti6Al4V foams usable in cancellous scaffolds

    , Article International Heat Treatment and Surface Engineering ; Volume 7, Issue 1 , 2013 , Pages 43-48 ; 17495148 (ISSN) Sadrnezhaad, S. K ; Aryana, M ; Hassanzadeh Nemati, N ; Alizadeh, M ; Ebadifar, A ; Sharif University of Technology
    2013
    Abstract
    Mechanical alloying and sintering were used to fabricate nanostructured Ti6Al4V scaffolds of highly controllable pore geometry and fully interconnected porous network. Elemental powders were milled for different periods of time (10, 20, 30, 40 and 60 h), mixed with 40-60 vol.-% of 200-400 μm cuboidal NaCl, compacted at 500-600 MPa and sintered according to single or double stage heat treatment regimes at 790 and 950°C under vacuum. After sintering, the samples were soaked in distilled water to washout the NaCl. Foamy microstructures were obtained showing well shaped biopores and fragmentary embedded micropores. The shape of initial NaCl was copied into the biopores which had highly... 

    Engineered conducting polymer-based scaffolds for cell release and capture

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2022 ; 00914037 (ISSN) Mahdavi, S. S ; Abdekhodaie, M. J ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    Conducting polymer-based devices and scaffolds has become remarkably popular due to their properties such as conductivity, tunable electrochemical properties, and straightforward fabrication procedures. Hence, they have versatile applications and can be used as implants, biosensors, cell capture/release devices, and regenerative medicine scaffolds. This review addresses the effect of conductive polymers on cell behavior since their conductive features can be applied to simulate a cellular response. Moreover, the impact of polymer chemical and physical properties on cellular response has been discussed. Recent biomedical engineering approaches used for cell capture and release were reviewed... 

    Synthesis and characterisation of β-tricalcium phosphate coating on zirconia toughened alumina by biomimetic method

    , Article Advances in Applied Ceramics ; Volume 112, Issue 3 , 2013 , Pages 140-145 ; 17436753 (ISSN) Esfahani, H ; Nemati, A ; Salahi, E ; Sharif University of Technology
    2013
    Abstract
    The present work studied bioactive coatings on the surface of ceramic biomaterials. Zirconia toughened alumina (ZTA) composites containing 15 mol.-%. Partially stabilised zirconia was prepared after 1 h sintering at 1550°C. Apatite layers were then coated onto the surfaces of composites by the biomimetic method using 1·5-2 multiply concentrations of simulated body fluid (SBF). Before treatment in SBFs, a sodium silicate layer was employed as nucleating agent to induce the formation of a calcium phosphate layer. The effect of immersion time on the morphology of the precipitate was monitored with a scanning electron microscope. X dot maps revealed that there is a relationship between... 

    Densification behavior and mechanical properties of biomimetic apatite nanocrystals

    , Article Current Nanoscience ; Volume 7, Issue 5 , 2011 , Pages 776-780 ; 15734137 (ISSN) Eskandari, A ; Aminzare, M ; Hassani, H ; Barounian, H ; Hesaraki, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    2011
    Abstract
    Nanocrystalline hydroxyapatite (nHA) of 50 nm average diameter and length to diameter ratio of >3 was synthesized by biomimetic method. Non-isothermal sintering improved densification behavior and mechanical properties of apatite to 0.88 maximum fractional density, 70MPa bending strength, 148MPa compressive strength and 2.53GPa microhardness at sintering temperature of 1250°C. Higher sintering temperatures resulted in the decomposition of the apatite and in-situ biphasic calcium phosphate HAP/TCP formation. This process lowered apatite densification and weakened mechanical properties of the sintered specimen. Transmission electron microscopy (TEM), x-ray diffraction (XRD) and field emission... 

    Biomimetic apatite layer formation on a novel citrate starch scaffold suitable for bone tissue engineering applications

    , Article Starch/Staerke ; Volume 68, Issue 11-12 , 2016 , Pages 1275-1281 ; 00389056 (ISSN) Nourmohammadi, J ; Shahriarpanah, S ; Asadzadehzanjani, N ; Khaleghpanah, S ; Heidari, S ; Sharif University of Technology
    Wiley-VCH Verlag  2016
    Abstract
    The formation of biomimetic bone-like apatite layers throughout the biopolymer-based hydrogel scaffold is an attractive approach in bone tissue engineering. Here, the starch scaffold was prepared using a combination of particulate leaching and freeze-drying techniques. The fabricated structures were then modified by citric acid to investigate the formation of bone-like apatite layer on the porous citrate-based scaffold after soaking in simulated body fluid (SBF). The Fourier Transform Infrared (FTIR) spectra and X-ray diffraction (XRD) patterns revealed that the B-type carbonated apatite has successfully deposited on the scaffold after immersing in SBF for 28 days. Indeed, high chemical... 

    Aerodynamic performance of a dragonfly-inspired tandem wing system for a biomimetic Micro air vehicle

    , Article Frontiers in Bioengineering and Biotechnology ; Volume 10 , 2022 ; 22964185 (ISSN) Salami, E ; Montazer, E ; Ward, T. A ; Nik Ghazali, N. N ; Anjum Badruddin, I ; Sharif University of Technology
    Frontiers Media S.A  2022
    Abstract
    The flying agility demonstrated by dragonflies is accomplished by means of complex aerodynamic forces produced by flapping their four wings arranged in a tandem configuration. The current study presents a novel tandem flapping wing mechanism for a biomimetic air vehicle that was designed and manufactured to experimentally investigate the aerodynamic forces. By optimizing the configuration and using spatial network analysis, it is shown that the designed structure can flap the wings in a linear up–down stroke motion and is capable of maintaining good consistency and aerodynamic performance. Such a mechanism could be used in a future biomimetic micro air vehicle (BMAV) design. The mechanism... 

    Modeling Paramecium swimming in a capillary tube

    , Article Scientia Iranica ; Volume 23, Issue 2 , 2016 , Pages 658-667 ; 10263098 (ISSN) Sarvestani, A. N ; Shamloo, A ; Ahmadian, M. T ; Sharif University of Technology
    Sharif University of Technology 
    Abstract
    In certain types of biomimetic surgery systems, micro robots inspired by Paramecium are designed to swim in a capillary tube for gaining access to internal organs with minimal invasion. Gaining insight into the mechanics of Paramecium swimming in a capillary tube is vital for optimizing the design of such systems. There are two approaches to modeling the physics of micro swimming. In the envelope approach, which is widely accepted by researchers, Paramecium is approximated as a sphere, self-propelled by tangential and normal surface distortions. However, not only is this approach incapable of considering the specific geometry of Paramecium, but it also neglects short range hydrodynamic... 

    Manipulability analysis for gimbal driven robotic arms

    , Article 2009 IEEE International Conference on Robotics and Biomimetics, ROBIO 2009, 19 December 2009 through 23 December 2009 ; 2009 , Pages 1039-1044 ; 9781424447756 (ISBN) Mohammadi, F ; Hemmatian, I ; Ghaem Osgouie, K ; Sharif University of Technology
    Abstract
    Gimbal transmissions are non-linear direct transmissions and can be used in robotic arms replacing the traditional revolute joints. To investigate manipulability of robotic manipulators, the classical criterion of Manipulability Ellipsoid has been formulated. Thus by keeping a constant norm for robot joint torques vector, the effects of replacing some traditional revolute joints in robotic arms with Gimbal transmissions, have been analyzed. The results show that the magnitude of the maximum force applicable when employing Gimbal transmission can be considerably larger. Also, the joint angles in which this maximum occurs, can be adjusted, thanks to the behavior of Gimbal transmission. Two... 

    Biomimetic synthesis of calcium phosphate materials on alkaline-treated titanium

    , Article 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07, Lyon, 23 August 2007 through 26 August 2007 ; 2007 , Pages 5853-5856 ; 05891019 (ISSN) ; 1424407885 (ISBN); 9781424407880 (ISBN) Salemi, H ; Behnamghader, A ; Afshar, A ; Ardeshir, M ; Forati, T ; Sharif University of Technology
    2007
    Abstract
    The hydroxyapatite coating on metal implants is a suitable method to create a bioactive surface and to increase the bone-implant bonding strength. In this research, at first the titanium surface was treated with NaOH solutions ; 5N and 10N at 60°C for 24 h and 5N at 60°C for 24 h followed by heating at 600°C for 1 h. The samples were immersed in the simulated body fluid (SBF) for 28 days to generate a calcium phosphate coating on titanium substrates. The modified substrates and coatings were characterized using SEM and XRD. According to the results obtained in this work the concentration increase of the NaOH solution has influenced the grain boundaries, whereas the heat treatment at 600°C... 

    Biomimetic ultraflexible piezoresistive flow sensor based on graphene nanosheets and PVA hydrogel

    , Article Advanced Materials Technologies ; 2021 ; 2365709X (ISSN) Abolpour Moshizi, S ; Moradi, H ; Wu, S ; Han, Z. J ; Razmjou, A ; Asadnia, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Flow sensors play a critical role in monitoring flow parameters, including rate, velocity, direction, and rotation frequency. In this paper, inspired by biological hair cells in the human vestibular system, an innovative flow sensor is developed based on polyvinyl alcohol (PVA) hydrogel nanocomposites with a maze-like network of vertically grown graphene nanosheets (VGNs). The VGNs/PVA hydrogel absorbs a copious amount of water when immersed in water, making the sensor highly sensitive to tiny stimuli underwater. The sensor demonstrates a high sensitivity (5.755 mV (mm s−1)−1) and extremely low velocity detection (0.022 mm s−1). It also reveals outstanding performance in detecting... 

    Biomimetic ultraflexible piezoresistive flow sensor based on graphene nanosheets and PVA hydrogel

    , Article Advanced Materials Technologies ; 2021 ; 2365709X (ISSN) Abolpour Moshizi, S ; Moradi, H ; Wu, S ; Han, Z. J ; Razmjou, A ; Asadnia, M ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Flow sensors play a critical role in monitoring flow parameters, including rate, velocity, direction, and rotation frequency. In this paper, inspired by biological hair cells in the human vestibular system, an innovative flow sensor is developed based on polyvinyl alcohol (PVA) hydrogel nanocomposites with a maze-like network of vertically grown graphene nanosheets (VGNs). The VGNs/PVA hydrogel absorbs a copious amount of water when immersed in water, making the sensor highly sensitive to tiny stimuli underwater. The sensor demonstrates a high sensitivity (5.755 mV (mm s−1)−1) and extremely low velocity detection (0.022 mm s−1). It also reveals outstanding performance in detecting... 

    Reactivity studies of biomimetic catalytic epoxidation of alkenes with tetrabutylammonium periodate in the presence of various manganese porphyrins and nitrogen donors: Significant axial ligand π-bonding effects

    , Article New Journal of Chemistry ; Volume 28, Issue 6 , 2004 , Pages 740-747 ; 11440546 (ISSN) Mohajer, D ; Karimipour, G ; Bagherzadeh, M ; Sharif University of Technology
    Royal Society of Chemistry  2004
    Abstract
    Highly selective epoxidation (> 95%) of unfunctionalized alkenes was performed by tetrabutylammonium periodate in the presence of six different phenyl substituted manganese(III) meso-tetraphenylporphyrins [Mn(Por)] and imidazole in CH2Cl2. Electron-withdrawing and bulky substituents on the phenyl groups lowered the catalytic activities of the corresponding Mn(Por). Less bulky alkenes with electron -rich double bonds showed greater reactivity in the epoxidation. Co-catalytic activities of four different classes of axial nitrogen donors are compared in the presence of various Mn(Por). In general no direct correlation was found between co-catalytic activities and the pKa values of the nitrogen... 

    Biomimetic ultraflexible piezoresistive flow sensor based on graphene nanosheets and pva hydrogel

    , Article Advanced Materials Technologies ; Volume 7, Issue 1 , 2022 ; 2365709X (ISSN) Abolpour Moshizi, S ; Moradi, H ; Wu, S ; Han, Z. J ; Razmjou, A ; Asadnia, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Abstract
    Flow sensors play a critical role in monitoring flow parameters, including rate, velocity, direction, and rotation frequency. In this paper, inspired by biological hair cells in the human vestibular system, an innovative flow sensor is developed based on polyvinyl alcohol (PVA) hydrogel nanocomposites with a maze-like network of vertically grown graphene nanosheets (VGNs). The VGNs/PVA hydrogel absorbs a copious amount of water when immersed in water, making the sensor highly sensitive to tiny stimuli underwater. The sensor demonstrates a high sensitivity (5.755 mV (mm s−1)−1) and extremely low velocity detection (0.022 mm s−1). It also reveals outstanding performance in detecting... 

    Mechanical reinforcement of urinary bladder matrix by electrospun polycaprolactone nanofibers

    , Article Scientia Iranica ; Volume 24, Issue 6 , 2017 , Pages 3476-3480 ; 10263098 (ISSN) Ghafari, A. M ; Rajabi Zeleti, S ; Naji, M ; Ghanian, M. H ; Baharvand, H ; Sharif University of Technology
    Abstract
    For a successful repair and reconstruction of bladder tissue, fabrication of scaffolds with proper biochemical and biomechanical characteristics is necessary. Decellularized bladder tissue has been proposed in previous studies as a gold standard material for scaffold fabrication. However, weak mechanical properties of such a load-bearing tissue has remained a challenge. Incorporation of both biological and synthetic materials has been known as an effective strategy for improving mechanical and biological properties of the scaffolds. In the present work, a simple process was developed to fabricate hybrid hydrogel scaffolds with a biomimetic architecture from the natural urinary bladder... 

    Development of a new mechanism to change velocity in a helical swimmer robot at low Reynolds number

    , Article Scientia Iranica ; Volume 25, Issue 5B , 2018 , Pages 2616-2627 ; 10263098 (ISSN) Sayyaadi, H ; Bahmanyar, Sh ; Sharif University of Technology
    Sharif University of Technology  2018
    Abstract
    This paper presents a new mechanism with unique and prominent features for a helical swimmer robot. "Double Helices Propulsion Mechanism" consists of two parallel helices with a single axis rotating in the same direction. The outer helix acts as the main propulsion component, and the inner helix, which is made of a Shape Memory Alloy (SMA), controls the forward velocity during swimming. This mechanism, by varying the geometrical parameters of its helical tail, can change the forward velocity of the helical swimmer robot that is required by its predefined missions. In order to study the effects of geometric parameters on the forward velocity in the single helical swimmer, a hydrodynamic model... 

    Engineered Biomimetic Membranes for Organ-on-a-Chip

    , Article ACS Biomaterials Science and Engineering ; Volume 8, Issue 12 , 2022 , Pages 5038-5059 ; 23739878 (ISSN) Rahimnejad, M ; Rasouli, F ; Jahangiri, S ; Ahmadi, S ; Rabiee, N ; Ramezani Farani, M ; Akhavan, O ; Asadnia, M ; Fatahi, Y ; Hong, S ; Lee, J ; Lee, J ; Hahn, S. K ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Organ-on-a-chip (OOC) systems are engineered nanobiosystems to mimic the physiochemical environment of a specific organ in the body. Among various components of OOC systems, biomimetic membranes have been regarded as one of the most important key components to develop controllable biomimetic bioanalysis systems. Here, we review the preparation and characterization of biomimetic membranes in comparison with the features of the extracellular matrix. After that, we review and discuss the latest applications of engineered biomimetic membranes to fabricate various organs on a chip, such as liver, kidney, intestine, lung, skin, heart, vasculature and blood vessels, brain, and multiorgans with... 

    Design of an optimum torque actuator for augmenting lower extremity exoskeletons in biomechanical framework

    , Article 2011 IEEE International Conference on Robotics and Biomimetics, ROBIO 2011 ; 2011 , Pages 1979-1983 ; 9781457721373 (ISBN) Safavi, S ; Ghafari, A. S ; Meghdari, A ; Sharif University of Technology
    Abstract
    This research presents virtual prototyping and performance evaluation of a series elastic torque actuator developed for augmenting lower extremity exoskeletal systems employing biomechanical framework. For this purpose, experimental kinematical data of the lower extremity were collected for walking and backpack load carrying. Forward dynamics simulation of the movements under investigation is performed in a biomechanical framework consisting of a musculoskeletal model with ten degrees-of-freedom actuated by eighteen Hill-type musculotendon actuators per leg to perform the muscle functional analysis. Muscle torque analysis results employed for optimal design and selection of components in the... 

    Microfluidic-based multi-organ platforms for drug discovery

    , Article Micromachines ; Volume 7, Issue 9 , 2016 ; 2072666X (ISSN) Rezaei Kolahchi, A ; Khadem Mohtaram, N ; Pezeshgi Modarres, H ; Mohammadi, M. H ; Geraili, A ; Jafari, P ; Akbari, M ; Sanati Nezhad, A ; Sharif University of Technology
    MDPI AG 
    Abstract
    Development of predictive multi-organ models before implementing costly clinical trials is central for screening the toxicity, efficacy, and side effects of new therapeutic agents. Despite significant efforts that have been recently made to develop biomimetic in vitro tissue models, the clinical application of such platforms is still far from reality. Recent advances in physiologically-based pharmacokinetic and pharmacodynamic (PBPK-PD) modeling, micro- and nanotechnology, and in silico modeling have enabled single- and multi-organ platforms for investigation of new chemical agents and tissue-tissue interactions. This review provides an overview of the principles of designing...