Loading...
Search for: biomass
0.01 seconds
Total 70 records

    Biodegradation of toluene by an attached biofilm in a rotating biological contactor

    , Article Process Biochemistry ; Volume 36, Issue 8-9 , 2001 , Pages 707-711 ; 13595113 (ISSN) Alemzadeh, I ; Vossoughi, M ; Sharif University of Technology
    2001
    Abstract
    A laboratory scale study using a modified rotating biological contactor (RBC) was constructed to assess aerobic treatment of toluene, a typical aromatic hydrocarbon. The RBC consisted of 72 parallel discs rotating in a reservoir and was arranged in three stages, i.e. 24 discs oriented in each stage. An artificial wastewater containing toluene was fed to the RBC, inoculated with an enriched culture from petrochemical sewage. The rotation of the discs and the recycling time ensured good mixing of the bulk liquid and resulted in a regular biofilm thickness. Toluene removal was measured by COD measurement and GC. The effect of initial toluene concentration on toluene biodegradation showed a zero... 

    Biological removal of phenol from saline wastewater using a moving bed biofilm reactor containing acclimated mixed consortia

    , Article SpringerPlus ; Vol. 3, issue. 1 , 2014 , pp. 1-10 ; ISSN: 21931801 Nakhli, S. A. A ; Ahmadizadeh, K ; Fereshtehnejad, M ; Rostami, M. H ; Safari, M ; Borghei, S. M ; Sharif University of Technology
    Abstract
    In this study, the performance of an aerobic moving bed biofilm reactor (MBBR) was assessed for the removal of phenol as the sole substrate from saline wastewater. The effect of several parameters namely inlet phenol concentration (200-1200 mg/L), hydraulic retention time (8-24 h), inlet salt content (10-70 g/L), phenol shock loading, hydraulic shock loading and salt shock loading on the performance of the 10 L MBBR inoculated with a mixed culture of active biomass gradually acclimated to phenol and salt were evaluated in terms of phenol and chemical oxygen demand (COD) removal efficiencies. The results indicated that phenol and COD removal efficiencies are affected by HRT, phenol and salt... 

    Dataset of biomass characteristics and net output power from downdraft biomass gasifier integrated power production unit

    , Article Data in Brief ; Volume 33 , 2020 Safarian, S ; Ebrahimi Saryazdi, S. M ; Unnthorsson, R ; Richter, C ; Sharif University of Technology
    Elsevier Inc  2020
    Abstract
    This dataset includes 1032 runs from a biomass downdraft gasifier integrated with power production unit that is fed by 86 different types of biomasses from different groups (e.g. wood and woody biomasses, herbaceous and agricultural biomasses, animal biomasses, mixed biomasses and contaminated biomasses) and under various operating conditions. The dataset covers elemental and proximate analysis of various biomasses, operation conditions and the net output power from the biomass gasification-power production (BG-PP) in each case/run. This article has been submitted via another Elsevier journal as a co-submission, titled “Artificial neural network integrated with thermodynamic equilibrium... 

    Thermodynamic Modeling of Hydrogen Production from Biomass and Evaluation of Biomass Energy Technologies

    , M.Sc. Thesis Sharif University of Technology Hemmati, Shohreh (Author) ; Vossoughi, Manoochehr (Supervisor) ; Sabohi, Yadollah (Supervisor)
    Abstract
    Dependence on fossil fuels as the main energy sources has led to serious energy crisis and environmental problems, i.e. fossil fuel depletion and pollutant emission. Compared with fossil fuel, biomass is a clean energy with zero CO2 emission, because CO2 is fixed by photosynthesis during biomass growth and released again during utilization. Due to its low energy density, direct use of biomass is not convenient. Thus, it is necessary to convert biomass to fuel gas, such as hydrogen, which can be used cleanly and highly efficiently. One of the promising hydrogen production approaches is conversion from biomass, which is abundant, clean and renewable. Alternative thermo-chemical and biological... 

    Microalgae Cultivation for Simultaneous Treatment of Municipal Wastewater and Biofuel Feedstock Production

    , M.Sc. Thesis Sharif University of Technology Ebrahimian Kafshaei, Atefeh (Author) ; Vossoughi, Manoochehr (Supervisor) ; Kariminia, Hamid Reza (Supervisor)
    Abstract
    Depletion of fossil fuels and their price increase, world is going to face critical energy challenges in the near future. Thereforefinding proper replacements for fossil fuels is inevitable. On the other hand, releasing of huge amount of wastewater into environment imposes serious nvironmental threats. Microalgae can be a potential alternative for biological wastewater treatment as well as fuel production. Microalgae grown in wastewater can eliminate remaining nitrogen and phosphorous. The gorwn biomass can be used for biofuel production afterward. Microalgae can also decrease the amount of greenhouse gas through the consumption of CO2 as energy sources. In this study, nutrient removal from... 

    Modeling and Optimization of Solid Waste Application in Combined Heat and Power System

    , M.Sc. Thesis Sharif University of Technology Kolagar, Mina (Author) ; Roshandel, Ramin (Supervisor)
    Abstract
    increasing energy demand and emission of environmental pollutant as a result of using fossil fuels and increase in waste generated due to human activities resulted in considering this source as a partial substitute for fossil resources in power application . Hence in this project biomass is considered as source of energy for heat and power application. Having low quality energy is the most important difficulty for application this resource as an energy carrier, so, gasification is applied to convert this source to gas with higher quality one. Produced gas in gasification enters to a micro turbine to meet thermal and electrical demand of the Sharif energy research institute. To investigate... 

    Optimization of biomass and biokinetic constant in Mazut biodegradation by indigenous bacteria BBRC10061

    , Article Journal of Environmental Health Science and Engineering ; Vol. 12, issue. 1 , June , 2014 Khorasani, A. C ; Mashreghi, M ; Yaghmaei, S ; Sharif University of Technology
    Abstract
    Optimization based on appropriate parameters can be applied to improve a process. Mazut degradation as a critical issue in environment requires optimization to be efficiently done. To provide biodegradation conditions, experiments were designed on the least interactions among levels of parameters consisting of pH, Tween 80, glucose, phosphorous source, nitrogen source, and time. Kinetic constants and biomass were calculated based on 16 assays, designed using Taguchi method, which constructed various mazut biodegradation conditions. Kinetics of mazut degradation by newly isolated bacteria Enterobacter cloacae closely followed second order kinetic model. Results of the 16 experiments showed... 

    Biocompatible magnetic N-rich activated carbon from egg white biomass and sucrose: Preparation, characterization and investigation of dye adsorption capacity from aqueous solution

    , Article Surfaces and Interfaces ; Volume 15 , 2019 , Pages 157-165 ; 24680230 (ISSN) Vahdati Khajeh, S ; Zirak, M ; Zooghi Tejrag, R ; Fathi, A ; Lamei, K ; Eftekhari Sis, B ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the present work, N-rich activated carbon was synthesized using hydrothermal carbonization of egg white biomass in the presence of sucrose, followed by chemical activation and magnetization of hydrochar in the presence of iron (II) and (III) at NaOH solution. The results showed that the sucrose has a critical role in hydrochar yield by increasing of sucrose content. This claim also proved by SEM analysis, which hydrochar morphology was changed from the layered to fused carbon spheres morphology that confirmed the increasing of nucleation site. The materials were characterized with VSM, SEM, CHN, FTIR, Raman spectroscopy and XRD techniques. Capacity of prepared magnetic activated carbon... 

    High-purity hydrogen production with in situ CO2 capture based on biomass gasification

    , Article Fuel ; Volume 202 , 2017 , Pages 29-35 ; 00162361 (ISSN) Doranehgard, M. H ; Samadyar, H ; Mesbah, M ; Haratipour, P ; Samiezade, S ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Tar formation and CO2 emission represent the strongest barrier for use of gasification technology for biomass conversion, whereas sufficing for both is only possible with expensive physical methods and further chemical processing. The use of CaO as a CO2 sorbent within an advanced high-temperature gasification system is able to achieve efficient cracking of the tars to the primary syngas with low emissions. The present work aims to propose a semi-kinetic model on the basis of an Aspen Plus model to describe specific catalytic behavior of calcium oxide on the gasification of rice husk. There has also been an attempt to validate the developed model by means of an experimental study and explore... 

    Energy efficient cultivation of microalgae using phosphorescence materials and mirrors

    , Article Sustainable Cities and Society ; Volume 41 , 2018 , Pages 449-454 ; 22106707 (ISSN) Helali Esfahani, H ; Shafii, M. B ; Roshandel, R ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In the present study, two novel annular photobioreactors (PBR) were developed to enhance microalgae growth. One of these photobioreactors used mirrors outside the PBR, while the other one utilized phosphorescence materials inside the PBR. The results of the study suggested that the use of mirrors and phosphorescence materials led to 70% and 30% increase, respectively, in the light intensity without any additional energy consumption. Further, the results revealed that when compared with the base case, the biomass concentration increased by 91% and 24% in PBR with mirrors and phosphorescence materials, respectively. In conclusion, an improvement in PBRs resulted in efficient light to biomass... 

    Photocatalytic reforming of biomass-derived feedstock to hydrogen production

    , Article Research on Chemical Intermediates ; Volume 48, Issue 5 , 2022 , Pages 1793-1811 ; 09226168 (ISSN) Akhundi, A ; Naseri, A ; Abdollahi, N ; Samadi, M ; Moshfegh, A ; Sharif University of Technology
    Springer Science and Business Media B.V  2022
    Abstract
    Worldwide energy and environmental issues are forcing researchers to develop a green approach to produce a clean energy. However, traditional methods in reforming of fossil fuels to produce hydrogen (H2) are causing CO2 emission. Hydrogen is therefore an indirect greenhouse gas with a global warming potential. Hydrogen with high specific energy density can be considered as an efficient energy carrier as compared to fossil fuels. But hydrogen production from water splitting reaction has low efficiency, which limits its generation by green approach. For addressing this issue, different chemical hole scavengers have been applied, which is causing further environmental and economic problems. By... 

    Alkane Production from Biomass,Using Nano-Heterogeneous Catalysts

    , M.Sc. Thesis Sharif University of Technology Bastan, Farzad (Author) ; Kazemeini, Mohammad (Supervisor) ; Khorasheh, Farhad (Supervisor)
    Abstract
    Reduced supplies of fossil fuels worldwide attention to the economic and energy-efficient processes for the production of fuel from renewable sources is diverted.Biomass has the potential shown because it has features such as frequency and is renewable. Because of the high solubility of hydrocarbons derived from biomass in large amounts of water and oxygen, the process is then performed on the aqueous phase is considered. Recent research for the production of alkanes by the deformation of the aqueous phase (Aqueous Phase Reforming) by Catalyst on hydrocarbons derived from biomass, such as glycerol, ethylene glycol, sorbitol, glucose, and etc. has been done. Here is our attempt to use the APR... 

    Model for Evaluation of Integration of Biomass Systems and Energy Service

    , M.Sc. Thesis Sharif University of Technology Bakhshi Ashtiany, Mahnaz (Author) ; Saboohi, Yadollah (Supervisor) ; Avami, Akram (Supervisor)
    Abstract
    With regards to depleting of fossil energy sources and the country increasing need to energy, some efforts had been done to replacing renewable sources. To do this, due to decreasing greenhouse gasses, increasing the energy the protection sources, rural development and stable fuel supply in future, the biomass sources are take into consideration but one of considered problems of these sources is high cost and lack of infrastructures. Iran is among the countries that its fossil sources are coming to end and also has high potential of biomass sources. This research aim is developing of a model for evaluation of biomass utilization system to finding a path for supplying biomass energy and... 

    Investigating on Filtration of Solid Particles in Culture Media after Fermentation

    , M.Sc. Thesis Sharif University of Technology Maleki, Maziar (Author) ; Roosta Azad, Reza (Supervisor)
    Abstract
    In biotechnology processes, in addition of culture media there is a solid phase which dispensed across the system.In most of bioprocesses, first operational unit for downstream treatment is the separation of this particles from fermentation liquor. In contrast with other categories like inorganic chemistry, solid particles in fermentation liquor (which the main part of it is biomass itself) have complicated physical & rheological properties. For example, all of biomass species are hydrophilic and sometimes form colloidal solutions.With this perspective, separation of solid phase from fermentation liquor is a hard challenge in this kind of processes.In this research, with regard of great... 

    Optimization of Hybrid Solar-Biomass based CCHP (Combined Cooling, Heating, and Power)Cycles

    , M.Sc. Thesis Sharif University of Technology Jamali, Navid (Author) ; Avami, Akram (Supervisor) ; Broushaki, Mehrdad (Supervisor)
    Abstract
    Solar power is a clean energy resource which has been known as an important renewable energy source; however, due to the high cost of installation and the need for energy storage systems in the absence of sunlight at night, it has not been used on a large scale till now. Using the combination of solar energy and biomass energy from agriculture and urban waste in a power plant may be regarded as a commercial option due to the removal of individual solar power energy storage costs. In this study, a hybrid solar-biomass power plant will be studied. Linear Fresnelin and parabolic through technologies in the solar section and combustion and gasification technologies were used in the biomass... 

    Evaluation of nutrient removal and biomass production through mixotrophic, heterotrophic, and photoautotrophic cultivation of chlorella in nitrate and ammonium wastewater

    , Article International Journal of Environmental Research ; Volume 12, Issue 2 , 2018 , Pages 167-178 ; 17356865 (ISSN) Babaei, A ; Mehrnia, M. R ; Shayegan, J ; Sarrafzadeh, M. H ; Amini, E ; Sharif University of Technology
    Springer International Publishing  2018
    Abstract
    In this study, the effect of mixotrophic, heterotrophic, photoautotrophic (CO2 of air source), and photoautotrophic (bicarbonate source) cultivation of Chlorella vulgaris was investigated on microalgae growth rate and nutrient removal under different kinds of nitrogen sources. The highest N–NH3 +, N–NO3 −, P–PO4 3− (in ammonium source), and P–PO4 3− (in nitrate source) removal efficiency (87.28 ± 0.89, 70.00 ± 1.20, 87.00 ± 3.10, and 78.10 ± 1.95%, respectively) was reached in the mixotrophic culture. In all cultivations, when nitrate was used as the nitrogen source, specific growth rate, biomass productivity, and specific oxygen production rate (SOPR) were higher than the one with ammonium... 

    Artificial neural network integrated with thermodynamic equilibrium modeling of downdraft biomass gasification-power production plant

    , Article Energy ; Volume 213 , 2020 Safarian, S ; Ebrahimi Saryazdi, S. M ; Unnthorsson, R ; Richter, C ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    This study is a novel attempt in developing of an Artificial neural network (ANN) model integrated with a thermodynamic equilibrium approach for downdraft biomass gasification integrated power generation unit. The objective of the study is to predict the net output power from the systems derived from various kinds of biomass feedstocks under atmospheric pressure and various operating conditions. The input parameters used in the models are elemental analysis compositions (C, O, H, N and S), proximate analysis compositions (moisture, ash, volatile material and fixed carbon) and operating parameters (gasifier temperature and air to fuel ratio). The architecture of the model consisted of one... 

    Thermodynamic modeling for hydrogen production from biomass and evaluation of biomass energy technologies

    , Article Biotechniques for Air Pollution Control - Proceedings of the 3rd International Congress on Biotechniques for Air Pollution Control, 28 September 2009 through 30 September 2009, Delft ; 2010 , Pages 269-273 ; 9780415582704 (ISBN) Hemmati, Sh ; Saboohi, Y ; Hashemi, N ; Vossoughi, M ; Pazuki, G. R ; Sharif University of Technology
    2010
    Abstract
    Compared with fossil fuel, biomass is a clean energy with zero CO 2 emission, because CO 2 is fixed by photosynthesis during biomass growth and released again during utilization. Due to its low energy density, direct use of biomass is not convenient. Thus, it is necessary to convert biomass to fuel gas, such as hydrogen, which can be used cleanly and highly efficiently in fuel cell. Thermo-chemical gasification is likely to be the most cost-effective conversion process and it is promising technology for renewable hydrogen production by utilizing biomass. Biomass gasification produces a mixture of gases (mainly consisting of H 2, CO, CO 2, CH 4 and higher hydrocarbons), solids (char) and... 

    Effect of various carbon sources on biomass and lipid production of Chlorella vulgaris during nutrient sufficient and nitrogen starvation conditions

    , Article Bioresource Technology ; Volume 180 , 2015 , Pages 311-317 ; 09608524 (ISSN) Abedini Najafabadi, H ; Malekzadeh, M ; Jalilian, F ; Vossoughi, M ; Pazuki, G ; Sharif University of Technology
    Abstract
    In this research, a two-stage process consisting of cultivation in nutrient rich and nitrogen starvation conditions was employed to enhance lipid production in Chlorella vulgaris algal biomass. The effect of supplying different organic and inorganic carbon sources on cultivation behavior was investigated. During nutrient sufficient condition (stage I), the highest biomass productivity of 0.158. ±. 0.011. g/L/d was achieved by using sodium bicarbonate followed by 0.130. ±. 0.013, 0.111. ±. 0.005 and 0.098. ±. 0.003. g/L/d for sodium acetate, carbon dioxide and molasses, respectively. Cultivation under nitrogen starvation process (stage II) indicated that the lipid and fatty acid content... 

    Modeling and Energy Analysis of Downdraft Biomass Gasifier

    , M.Sc. Thesis Sharif University of Technology Gholami Bardeji, Kazem (Author) ; Roshandel, Ramin (Supervisor) ; Rashtchian, Davood (Supervisor)
    Abstract
    One of the processes for energy carriers creating from biomass is Gasification process. The main products of this process are hydrogen and carbon monoxide. Output of this process has an average calorific value and sensible heat. Using sensible heat for preheating inlet air is one the ways for enhancement gasification processes. In this study gasification process is modeled as zone modeling. The humidity, pressure and air preheating effects on output gas composition and system’s layout were investigated. In the first and second scenario comparing the shifting of gas blower from downstream to upstream of gasification reactor is studied. It is showed the average temperature and number of...