Loading...
Search for: biological-tissues
0.005 seconds

    The propagation of laser light in skin by Monte Carlo-diffusion method: A fast and accurate method to simulate photon migration in biological tissues

    , Article Journal of Lasers in Medical Sciences ; Volume 2, Issue 3 , 2011 , Pages 109-114 ; 20089783 (ISSN) Golshan, M. A ; Tarei, M. G ; Ansari, M. A ; Amjadi, A ; Sharif University of Technology
    2011
    Abstract
    Introduction: Due to the importance of laser light penetration and propagation in biological tissues, many researchers have proposed several numerical methods such as Monte Carlo, finite element and green function methods. Among them, the Monte Carlo method is an accurate method which can be applied for different tissues. However, because of its statistical nature, Monte Carlo simulation requires a large number of photon pockets to be traced, so it is computationally expensive and time-consuming. Although other numerical methods based on the diffusion method are fast, they have two important limitations: first, they are not valid near the bounder of sample and source, and second, their... 

    Assessing and Improving Algorithms to Control the Propagation of Light through Scattering Media

    , M.Sc. Thesis Sharif University of Technology Fayyaz, Zahra (Author) ; Rahimitabar, Mohammad Reza (Supervisor) ; Nasiriavanaki, Mohammad Reza (Supervisor)
    Abstract
    Light propagation through turbid media, such as biological tissues, experience scattering due to inhomogeneous distribution of refractive indices of their microscopic structure. Scattering and diffusion of light not only limit many optical imaging techniques, but are also big challenges for telecommunication, spectroscopy, and other optical techniques. Recently many new imaging methods are developed that work in strongly scattering media such as optical coherence tomography, diffusion tomography, and laser speckle velocimetry. In this thesis, we have studied how wavefront shaping techniques can tackle the problem of scattering. By spatially shaping the wavefront of the incident beam, using... 

    Investigation of Mechanical Properties of Healthy Red Blood Cells using Optical Tweezers

    , M.Sc. Thesis Sharif University of Technology Azadbakht, Ali (Author) ; Seyed Reihani, Nader (Supervisor) ; Moosavi-Movahhedi, Ali Akbar (Co-Advisor)
    Abstract
    Red blood cells (RBC, erythrocytes) are cells with an average diameter of 8 microns, the thickness of 2-3 microns and the volume of 90 fl. The biconcave shape of red blood cells,together with cell membrane flexibility, enables them to pass the capillaries whose diameter is considerably less than 8 micrometers. Mechanical properties of RBC are related to their membrane and cytoskeleton, which consists of spectrin network. Optical tweezers is able to exert very precise forces to erythrocytes using beed as a handle. In this report, we studied mechanical properties of RBC such as elasticity and viscoelasticity using single trap optical tweezers with beads with antibody coated in order to attach... 

    3-D electrical model of a neuroprosthesis stimulator based on the concept of stimulus router system

    , Article 2013 20th Iranian Conference on Biomedical Engineering, ICBME 2013 ; 2013 , Pages 265-268 Ashiri, M ; Zahedi, E ; Sharif University of Technology
    IEEE Computer Society  2013
    Abstract
    Lost sensory or motor functions can be restored using electrical neural prostheses (NP), which include surface NPs, implanted or subcutaneous NPs and the more recent Stimulus Router System (SRS). The latter type of NP outperforms the other types in its selective excitation and least invasiveness. In each case, the achieved performance depends on a multitude of design factors among which the electrical excitation waveform shape, frequency, duration of pulses, configuration of electrodes, number of intervals, thermal conditions and electrode material. To investigate the effects of these parameters on the distribution of electric current inside biological tissues, numerical modeling can be... 

    A novel algorithm for fast and efficient multifocus wavefront shaping

    , Article Photons Plus Ultrasound: Imaging and Sensing 2018, 28 January 2018 through 1 February 2018 ; Volume 10494 , 2018 ; 16057422 (ISSN); 9781510614734 (ISBN) Fayyaz, Z ; Nasiriavanaki, M ; Sharif University of Technology
    SPIE  2018
    Abstract
    Wavefront shaping using spatial light modulator (SLM) is a popular method for focusing light through a turbid media, such as biological tissues. Usually, in iterative optimization methods, due to the very large number of pixels in SLM, larger pixels are formed, bins, and the phase value of the bins are changed to obtain an optimum phase map, hence a focus. In this study an efficient optimization algorithm is proposed to obtain an arbitrary map of focus utilizing all the SLM pixels or small bin sizes. The application of such methodology in dermatology, hair removal in particular, is explored and discussed. © COPYRIGHT SPIE. Downloading of the abstract is permitted for personal use only  

    The impact of zirconium oxide nanoparticles content on alginate dialdehyde-gelatin scaffolds in cartilage tissue engineering

    , Article Journal of Molecular Liquids ; Volume 335 , 2021 ; 01677322 (ISSN) Ghanbari, M ; Salavati Niasari, M ; Mohandes, F ; Firouzi, Z ; Mousavi, S.-D ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    The desire to regenerate and repair native tissues can be immediately performed by multiple tissue engineering procedures. Gelatin and alginate are biocompatible and biodegradable polymers. The addition of ZrO2 nanoparticles (NPs) into the alginate-gelatin hydrogel is considered to improve mechanical and chemical properties. Therefore, nanocomposite hydrogels have been manufactured by the freeze-drying procedure utilizing oxidized alginate-gelatin with ZrO2 NPs as a reinforcement. The fabricated nanocomposite hydrogels were character-ized by FTIR, FESEM, and rheometer. The hydrogels containing a higher ZrO2 NPs content (1.5%) have better mechanical properties than the hydrogels without NPs.... 

    Characterization of constrained aged niti strips for using in artificial muscle actuators

    , Article International Journal of Engineering, Transactions A: Basics ; Volume 24, Issue 4 , 2011 , Pages 321-329 ; 17281431 (ISSN) Hassanzadeh Nemati, N ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    Marvelous bending/straightening effects of two-way shape memory alloy (TWSMA) help their employment in design and manufacturing of new medical appliances. Constrained ageing with bending load scheme can induce two-way shape memory effect (TWSME). Scanning electron microscopic (SEM) analysis, electrical resistivity measurement (ERM) and differential scanning calorimetry (DSC) are employed to determine the property change due to flat strip constrained aging. Results show that flat-annealing prior to the aging shifts NiTi transformations temperatures to higher values. Superelastic behavior of the as-received/flat- annealed/aged samples with more adequate transition temperatures due to... 

    Apoptotic and anti-apoptotic genes transcripts patterns of graphene in mice

    , Article Materials Science and Engineering C ; Volume 71 , 2017 , Pages 460-464 ; 09284931 (ISSN) Ahmadian, H ; Hashemi, E ; Akhavan, O ; Shamsara, M ; Hashemi, M ; Farmany, A ; Daliri Joupari, M ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    Recent studies showed that a large amount of graphene oxide accumulated in kidney and liver when it injected intravenously. Evaluation of lethal and apoptosis gene expression in these tissues, which are under stress is very important. In this paper the in vivo dose-dependent effects of graphene oxide and reduced graphene oxide nanoplatelets on kidney and liver of mice were studied. Balb/C mice were treated by 20 mg/kg body weight of nanoplatelets. Molecular biology analysis showed that graphene nanoplatelets injected intravenously lead to overexpression of BAX gene in both kidney and liver tissues (P ≥ 0.01). In addition these nanoparticles significantly increase BCL2 gene expression in both... 

    A comprehensive study on the fabrication and properties of biocomposites of poly(lactic acid)/ceramics for bone tissue engineering

    , Article Materials Science and Engineering C ; Volume 70 , 2017 , Pages 897-912 ; 09284931 (ISSN) Tajbakhsh, S ; Hajiali, F ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The fabrication of a suitable scaffold material is one of the major challenges for bone tissue engineering. Poly(lactic acid) (PLA) is one of the most favorable matrix materials in bone tissue engineering owing to its biocompatibility and biodegradability. However, PLA suffers from some shortcomings including low degradation rate, low cell adhesion caused by its hydrophobic property, and inflammatory reactions in vivo due to its degradation product, lactic acid. Therefore, the incorporation of bioactive reinforcements is considered as a powerful method to improve the properties of PLA. This review presents a comprehensive study on recent advances in the synthesis of PLA-based biocomposites... 

    Fabrication and properties of polycaprolactone composites containing calcium phosphate-based ceramics and bioactive glasses in bone tissue engineering: a review

    , Article Polymer Reviews ; Volume 58, Issue 1 , 2018 , Pages 164-207 ; 15583724 (ISSN) Hajiali, F ; Tajbakhsh, S ; Shojaei, A ; Sharif University of Technology
    Taylor and Francis Inc  2018
    Abstract
    Polycaprolactone (PCL) is a bioresorbable and biocompatible polymer that has been widely used in long-term implants and controlled drug release applications. However, when it comes to tissue engineering, PCL suffers from some shortcomings such as slow degradation rate, poor mechanical properties, and low cell adhesion. The incorporation of calcium phosphate-based ceramics and bioactive glasses into PCL has yielded a class of hybrid biomaterials with remarkably improved mechanical properties, controllable degradation rates, and enhanced bioactivity that are suitable for bone tissue engineering. This review presents a comprehensive study on recent advances in the fabrication and properties of... 

    Magnetic nanocomposites for biomedical applications

    , Article Advances in Colloid and Interface Science ; Volume 308 , 2022 ; 00018686 (ISSN) Naghdi, M ; Ghovvati, M ; Rabiee, N ; Ahmadi, S ; Abbariki, N ; Sojdeh, S ; Ojaghi, A ; Bagherzadeh, M ; Akhavan, O ; Sharifi, E ; Rabiee, M ; Saeb, M. R ; Bolouri, K ; Webster, T. J ; Zare, E. N ; Zarrabi, A ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    Tissue engineering and regenerative medicine have solved numerous problems related to the repair and regeneration of damaged organs and tissues arising from aging, illnesses, and injuries. Nanotechnology has further aided tissue regeneration science and has provided outstanding opportunities to help disease diagnosis as well as treat damaged tissues. Based on the most recent findings, magnetic nanostructures (MNSs), in particular, have emerged as promising materials for detecting, directing, and supporting tissue regeneration. There have been many reports concerning the role of these nano-building blocks in the regeneration of both soft and hard tissues, but the subject has not been... 

    Bilayered heparinized vascular graft fabricated by combining electrospinning and freeze drying methods

    , Article Materials Science and Engineering C ; Volume 94 , 2019 , Pages 1067-1076 ; 09284931 (ISSN) Khayat Norouzi, S ; Shamloo, A ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    Small diameter vascular grafts (<6 mm) are highly demanded for patients suffering from severe occluded arteries to be used as a bypass or substituted conduit. Fabricating a graft with appropriate structural, mechanical and cell growth properties which has simultaneously anti-thrombogenic trait is a challenge nowadays. Here, we proposed a bilayer heparinized vascular graft that can mimic the structural and mechanical characteristics close to those of the native coronary artery by combining electrospinning and freeze drying methods. In this study, the inner layer was made by co-electrospinning of synthetic polymer, poly-caprolactone (PCL) and the natural polymer, gelatin (Gel). Also, heparin... 

    Fabrication and characterization of an injectable reinforced composite scaffold for cartilage tissue engineering: An in vitro study

    , Article Biomedical Materials (Bristol) ; Volume 16, Issue 4 , 2021 ; 17486041 (ISSN) Khozaei Ravari, M ; Mashayekhan, S ; Zarei, F ; Sayyahpour, F. A ; Taghiyar, L ; Eslaminejad, M. B ; Sharif University of Technology
    IOP Publishing Ltd  2021
    Abstract
    There are limitations in current medications of articular cartilage injuries. Although injectable bioactive hydrogels are promising options, they have decreased biomechanical performance. Researchers should consider many factors when providing solutions to overcome these challenges. In this study, we created an injectable composite hydrogel from chitosan and human acellular cartilage extracellular matrix (ECM) particles. In order to enhance its mechanical properties, we reinforced this hydrogel with microporous microspheres composed of the same materials as the structural building blocks of the scaffold. Articular cartilage from human donors was decellularized by a combination of physical,...