Loading...
Search for: biochemistry
0.006 seconds
Total 33 records

    Biochemical mechanisms of dose-dependent cytotoxicity and ROS-mediated apoptosis induced by lead sulfide/graphene oxide quantum dots for potential bioimaging applications

    , Article Scientific Reports ; Volume 7, Issue 1 , 2017 ; 20452322 (ISSN) Ayoubi, M ; Naserzadeh, P ; Hashemi, M. T ; Reza Rostami, M ; Tamjid, E ; Tavakoli, M. M ; Simchi, A ; Sharif University of Technology
    Abstract
    Colloidal quantum dots (CQD) have attracted considerable attention for biomedical diagnosis and imaging as well as biochemical analysis and stem cell tracking. In this study, quasi core/shell lead sulfide/reduced graphene oxide CQD with near infrared emission (1100 nm) were prepared for potential bioimaging applications. The nanocrystals had an average diameter of ~4 nm, a hydrodynamic size of ~8 nm, and a high quantum efficiency of 28%. Toxicity assay of the hybrid CQD in the cultured human mononuclear blood cells does not show cytotoxicity up to 200 μg/ml. At high concentrations, damage to mitochondrial activity and mitochondrial membrane potential (MMP) due to the formation of... 

    afpCOOL: a tool for antifreeze protein prediction

    , Article Heliyon ; Volume 4, Issue 7 , 2018 ; 24058440 (ISSN) Eslami, M ; Shirali Hossein Zade, R ; Takalloo, Z ; Mahdevar, G ; Emamjomeh, A ; Sajedi, R. H ; Zahiri, J ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Various cold-adapted organisms produce antifreeze proteins (AFPs), which prevent the freezing of cell fluids by inhibiting the growth of ice crystals. AFPs are currently being recognized in various organisms, living in extremely low temperatures. AFPs have several important applications in increasing freeze tolerance of plants, maintaining the tissue in frozen conditions and producing cold-hardy plants by applying transgenic technology. Substantial differences in the sequence and structure of the AFPs, pose a challenge for researchers to identify these proteins. In this paper, we proposed a novel method to identify AFPs, using supportive vector machine (SVM) by incorporating 4 types of... 

    Effects of polydimethylsiloxane grafting on the calcification, physical properties, and biocompatibility of polyurethane in a heart valve

    , Article Journal of Applied Polymer Science ; Volume 98, Issue 2 , 2005 , Pages 758-766 ; 00218995 (ISSN) Dabagh, M ; Abdekhodaie, M. J ; Khorasani, M. T ; Sharif University of Technology
    2005
    Abstract
    Segmented polyurethane (PU) has proven to be the best biomaterial for artificial heart valves, but the calcification of polyurethane surfaces causes serious problems in long-term implants. This work was undertaken to evaluate the effects of polydimethylsiloxane (PDMS) grafting on the calcification, biocompatibility, and blood compatibility of polyurethane. A grafted polyurethane film was compared with virgin polyurethane surfaces. Physical properties of the samples were examined using different techniques. The hydrophobicity of the polyurethane films increased as a result of silicone modification. The effects of surface modification of polyurethane films on their calcification and fibroblast... 

    Low-Reynolds-number predator

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 92, Issue 6 , December , 2015 ; 15393755 (ISSN) Ebrahimian, M ; Yekehzare, M ; Ejtehadi, M. R ; Sharif University of Technology
    American Physical Society  2015
    Abstract
    To generalize simple bead-linker model of swimmers to higher dimensions and to demonstrate the chemotaxis ability of such swimmers, here we introduce a low-Reynolds predator, using a two-dimensional triangular bead-spring model. Two-state linkers as mechanochemical enzymes expand as a result of interaction with particular activator substances in the environment, causing the whole body to translate and rotate. The concentration of the chemical stimulator controls expansion versus the contraction rate of each arm and so affects the ability of the body for diffusive movements; also the variation of activator substance's concentration in the environment breaks the symmetry of linkers' preferred... 

    The effect of influent COD and upward flow velocity on the behaviour of sulphate-reducing bacteria

    , Article Process Biochemistry ; Volume 40, Issue 7 , 2005 , Pages 2305-2310 ; 13595113 (ISSN) Shayegan, J ; Ghavipanjeh, F ; Mirjafari, P ; Sharif University of Technology
    2005
    Abstract
    The effect of up velocity and influent COD concentration on the activity of sulphate-reducing bacteria (SRB) in UASB reactors is discussed. To study these effects, four UASB reactors were built and utilized in parallel. Examinations were carried out in two different concentrations of molasses (500 mg COD/l and 1000 mg COD/l) and four different upward flow velocities. It was observed that at velocities greater than 1 m/h, SRB bacteria were easily washed out from the reactors due to lower density and lack of ability to form dense and firm granules. It was found that in low-strength wastewaters with a COD to sulphate ratio of 2, an upward velocity in the range of 1.5-2.5 m/h could be... 

    Microfluidic devices as invitro microenvironments for -stem cell culture

    , Article Proceedings of the IASTED International Conference on Biomedical Engineering, BioMed 2014 ; 2014 , pp. 83-88 Shamloo, A ; Abeddoust, M ; Mehboudi, N ; Sharif University of Technology
    Abstract
    Many potential therapies are currently being studied that may promote neural regeneration and guide regenerating axons to form correct connections following injury. It has been shown that adult neurons have some limited regenerative capabilities, and the lack of connection formation between neurons is not an intrinsic inability of these cells to form axons after being damaged, but rather the inhibitory microenvironment of the injured tissue prevents regeneration. In this study, the polarization and chemotaxis of neuronal stem cells (NSC) in response to quantified gradients of nerve growth factor (NGF) was examined. To accomplish this, a microfluidic device was designed and fabricated to... 

    A computational model for estimation of mechanical parameters in chemotactic endothelial cells

    , Article Scientia Iranica ; Volume 23, Issue 1 , 2016 , Pages 260-267 ; 10263098 (ISSN) Kiyoumarsioskouei, A ; Shamloo, A ; Azimi, S ; Abeddoust, M ; Saidi, M.S ; Sharif University of Technology
    Sharif University of Technology 
    Abstract
    A cell migration numerical simulation is presented to mimic the motility of endothelial cells subjected to the concentration gradients of a Forebrain embryoniccortical neuron Conditioned Medium (CM). This factor was previously shflown to induce the directional chemotaxis of endothelial cells with an over-expressed G protein coupled receptor 124 (GPR 124). A cell simulator program incorporates basic elements of the cell cytoskeleton, including membrane, nucleus and cytoskeleton. The developed 2D cell model is capable of responding to concentration gradients of biochemical factors by changing the cytoskeleton arrangement. Random walk force, cell drag force and cell inertial effects are also... 

    Modeling of microfluidic microbial fuel cells using quantitative bacterial transport parameters

    , Article Journal of Power Sources ; Volume 342 , 2017 , Pages 1017-1031 ; 03787753 (ISSN) Mardanpour, M. M ; Yaghmaei, S ; Kalantar, M ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    The objective of present study is to analyze the dynamic modeling of bioelectrochemical processes and improvement of the performance of previous models using quantitative data of bacterial transport parameters. The main deficiency of previous MFC models concerning spatial distribution of biocatalysts is an assumption of initial distribution of attached/suspended bacteria on electrode or in anolyte bulk which is the foundation for biofilm formation. In order to modify this imperfection, the quantification of chemotactic motility to understand the mechanisms of the suspended microorganisms’ distribution in anolyte and/or their attachment to anode surface to extend the biofilm is implemented... 

    Integrated system of multiple batches to evaluate the continuous performance of microbial cells in decolourization processes

    , Article Journal of Environmental Chemical Engineering ; Volume 6, Issue 1 , February , 2018 , Pages 728-735 ; 22133437 (ISSN) Vatandoostarani, S ; Bagheri Lotfabad, T ; Heidarinasab, A ; Ebadipour, N ; Yaghmaei, S ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Azo dye degradation in wastewater treatment is a subject which has garnered the attention of many research studies. In this study, an innovative approach, namely, an integrated system of five batches (ISFB), was developed to investigate the capability of Saccharomyces cerevisiae ATCC 9763 for continuous degradation of methyl red as a representative azo dye. Toward this end, an expanded immobilized microbial bed (EIMB) reactor was established with a bed of encapsulated yeast cells in sodium alginate. EIMB reactor was run in two modes, single batch and ISFB. Moreover, durability of the microbial cells was evaluated by repeating the continuous decolourization eight sequential times in EIMB at... 

    Biodegradation of polychlorinated biphenyls by lysinibacillus macrolides and bacillus firmus isolated from contaminated soil

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 32, Issue 5 , 2019 , Pages 628-633 ; 1728144X (ISSN) Samadi, A ; Sharifi, H ; Ghobadi Nejad, Z ; Yaghmaei, S ; Sharif University of Technology
    Materials and Energy Research Center  2019
    Abstract
    Polychlorinated biphenyls (PCBs) cause many significant ecological problems because of their low degradability, high harmfulness, and solid bioaccumulation.Two bacterial strains were isolated from soil that had been polluted with electrical transformer liquid for more than 40 years. The isolates were distinguished as Lysinibacillus macrolides DSM54Tand Bacillus firmus NBRC15306Tthrough 16S rRNA sequencing analysis.This is the primary report of an agent of the genus Bacillus firmus equipped for the removal of PCBs. The strains could develop broadly on 2-Chlorobiphenyl and 2,4-dichlorobiphenyl. GC/MS analysis of individual congeners revealed up to 80% degradation of the xenobiotics in 96h,... 

    Preparation and characterization of raloxifene nanoparticles using Rapid Expansion of Supercritical Solution (RESS)

    , Article Journal of Supercritical Fluids ; Volume 63 , 2012 , Pages 169-179 ; 08968446 (ISSN) Keshavarz, A ; Karimi Sabet, J ; Fattahi, A ; Golzary, A ; Rafiee Tehrani, M ; Dorkoosh, F. A ; Sharif University of Technology
    2012
    Abstract
    One of the key factors in drug's efficacy is the value of their bioavailability that increases by the reduction of particle size through improvement of dissolution rate. In this study, raloxifene particle size was reduced by Rapid Expansion of Supercritical Solution (RESS). The effect of extraction temperature (40-80 °C), extraction pressure (10-18 MPa) and spray distance (5-10 cm) were investigated on size and particle size distribution of the nanoparticles. Particles were characterized using X-ray diffraction (XRD), Fourier Transform Infrared Analysis (FTIR), Differential Scanning Calorimetry (DSC), Scanning Electron Microscopy (SEM) and Dynamic Light Scattering (DLS). The average size of... 

    High-capacity hierarchically imprinted polymer beads for protein recognition and capture

    , Article Angewandte Chemie - International Edition ; Volume 50, Issue 2 , December , 2011 , Pages 495-498 ; 14337851 (ISSN) Nematollahzadeh, A ; Sun, W ; Aureliano, C. S. A ; Lütkemeyer, D ; Stute, J ; Abdekhodaie, M. J ; Shojaei, A ; Sellergren, B ; Sharif University of Technology
    2011
    Abstract
    Leaving an imprint: Hierarchical protein imprinting starting from wide-pore silica modified with a submonolayer of adsorbed protein (IgG or HSA) leads to an inverse polymeric replica of the silica template that features highly accessible protein-complementary binding sites (see picture). The resulting poly(acrylamide) beads (PIgG or PHSA) feature high binding capacities and can be used to selectively capture the proteins HSA and IgG from blood serum  

    A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    , Article Journal of Micromechanics and Microengineering ; Volume 26, Issue 1 , November , 2015 ; 09601317 (ISSN) Shamloo, A ; Amirifar, L ; Sharif University of Technology
    Institute of Physics Publishing  2015
    Abstract
    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be... 

    Dynamical analysis of microfluidic microbial electrolysis cell via integrated experimental investigation and mathematical modeling

    , Article Electrochimica Acta ; Volume 227 , 2017 , Pages 317-329 ; 00134686 (ISSN) Mardanpour, M. M ; Yaghmaei, S ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The present study deals with the feasibility of a microfluidic microbial electrolysis cell (MEC) as an efficient biohydrogen generator for medical usage for the first time. The evaluation of nickel in microfluidic MEC as an alternative for conventional electrodes indicates successful performance in the improvement of bioenergy production. The maximum biohydrogen production rate and produced power density of 2.2 μW cm−2 and 1.4 μl H2 μl substrate−1 day−1 were obtained, respectively. It is considered a promising technology for medical usage due to the following factors: significant biohydrogen generation, low consumption of expensive materials, simple construction, and utilization of human... 

    Complete steric exclusion of ions and proton transport through confined monolayer water

    , Article Science ; Volume 363, Issue 6423 , 2019 , Pages 145-148 ; 00368075 (ISSN) Gopinadhan, K ; Hu, S ; Esfandiar, A ; Lozada Hidalgo, M ; Wang, F. C ; Yang, Q ; Tyurnina, A. V ; Keerthi, A ; Radha, B ; Geim, A. K ; Sharif University of Technology
    American Association for the Advancement of Science  2019
    Abstract
    It has long been an aspirational goal to create artificial structures that allow fast permeation of water but reject even the smallest hydrated ions, replicating the feat achieved by nature in protein channels (e.g., aquaporins). Despite recent progress in creating nanoscale pores and capillaries, these structures still remain distinctly larger than protein channels. We report capillaries made by effectively extracting one atomic plane from bulk crystals, which leaves a two-dimensional slit of a few angstroms in height. Water moves through these capillaries with little resistance, whereas no permeation could be detected even for such small ions as Na + and Cl − . Only protons (H + ) can... 

    Natural polymers decorated mof-mxene nanocarriers for co-delivery of doxorubicin/pCRISPR

    , Article ACS Applied Bio Materials ; Volume 4, Issue 6 , 2021 , Pages 5106-5121 ; 25766422 (ISSN) Rabiee, N ; Bagherzadeh, M ; Jouyandeh, M ; Zarrintaj, P ; Saeb, M. R ; Mozafari, M ; Shokouhimehr, M ; Varma, R. S ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    A one-pot and facile method with assistance of high gravity was applied for the synthesis of inorganic two-dimensional MOF-5 embedded MXene nanostructures. The innovative inorganic MXene/MOF-5 nanostructure was applied in co-delivery of drug and gene, and to increase its bioavailability and interaction with the pCRISPR, the nanomaterial was coated with alginate and chitosan. The polymer-coated nanosystems were fully characterized, and the sustained DOX delivery and comprehensive cytotoxicity studies were conducted on the HEK-293, PC12, HepG2, and HeLa cell lines, demonstrating acceptable and excellent cell viability at both very low (0.1 μg.mL-1) and high (10 μg·mL-1) concentrations. The... 

    Efficient simulation of resonance Raman spectra with tight-binding approximations to density functional theory

    , Article Journal of Chemical Physics ; Volume 157, Issue 8 , Volume 157, Issue 8 , 2022 ; 00219606 (ISSN) Ashtari Jafari, S ; Jamshidi, Z ; Visscher, L ; Sharif University of Technology
    American Institute of Physics Inc  2022
    Abstract
    Resonance Raman spectroscopy has long been established as one of the most sensitive techniques for detection, structure characterization, and probing the excited-state dynamics of biochemical systems. However, the analysis of resonance Raman spectra is much facilitated when measurements are accompanied by Density Functional Theory (DFT) calculations that are expensive for large biomolecules. In this work, resonance Raman spectra are therefore computed with the Density Functional Tight-Binding (DFTB) method in the time-dependent excited-state gradient approximation. To test the accuracy of the tight-binding approximations, this method is first applied to typical resonance Raman benchmark... 

    Fungal bioleaching of e-waste utilizing molasses as the carbon source in a bubble column bioreactor

    , Article Journal of Environmental Management ; Volume 307 , 2022 ; 03014797 (ISSN) Nili, S ; Arshadi, M ; Yaghmaei, S ; Sharif University of Technology
    Academic Press  2022
    Abstract
    Mobile phones are known as the most widely used electronic instruments, and an enormous number of discarded mobile phones are generated. The present work used a pure culture of Penicillium simplicissimum in a bubble column bioreactor to extract Cu and Ni from mobile phone printed circuit boards (MPPCBs) waste. Molasses was used as an efficient carbon source to enhance bioleaching efficiency and increase the cost benefits. The adaptation phase was done at Erlenmeyer flasks to reach 40 g/L of MPPCBs powder. The most significant parameters, including the mass of MPPCBs powder, aeration, molasses concentration, and their interaction, were optimized in order to leach the maximum possible Cu and... 

    The colorful world of carotenoids: a profound insight on therapeutics and recent trends in nano delivery systems

    , Article Critical Reviews in Food Science and Nutrition ; Volume 62, Issue 13 , 2022 , Pages 3658-3697 ; 10408398 (ISSN) Maghsoudi, S ; Taghavi Shahraki, B ; Rabiee, N ; Fatahi, Y ; Bagherzadeh, M ; Dinarvand, R ; Ahmadi, S ; Rabiee, M ; Tahriri, M ; Hamblin, M. R ; Tayebi, L ; Webster, T. J ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    The therapeutic effects of carotenoids as dietary supplements to control or even treat some specific diseases including diabetic retinopathy, cardiovascular diseases, bacterial infections, as well as breast, prostate, and skin cancer are discussed in this review and also thoughts on future research for their widespread use are emphasized. From the stability standpoint, carotenoids have low bioavailability and bioaccessibility owing to their poor water solubility, deterioration in the presence of environmental stresses such as oxygen, light, and high heat as well as rapid degradation during digestion. Nanoencapsulation technologies as wall or encapsulation materials have been increasingly... 

    Management of soybean oil refinery wastes through recycling them for producing biosurfactant using Pseudomonas aeruginosa MR01

    , Article World Journal of Microbiology and Biotechnology ; Volume 29, Issue 6 , June , 2013 , Pages 1039-1047 ; 09593993 (ISSN) Partovi, M ; Lotfabad, T. B ; Roostaazad, R ; Bahmaei, M ; Tayyebi, S ; Sharif University of Technology
    2013
    Abstract
    Biosurfactant production through a fermentation process involving the biodegradation of soybean oil refining wastes was studied. Pseudomonas aeruginosa MR01 was able to produce extracellular biosurfactant when it was cultured in three soybean oil refinement wastes; acid oil, deodorizer distillate and soapstock, at different carbon to nitrogen ratios. Subsequent fermentation kinetics in the three types of waste culture were also investigated and compared with kinetic behavior in soybean oil medium. Biodegradation of wastes, biosurfactant production, biomass growth, nitrate consumption and the number of colony forming units were detected in four proposed media, at specified time intervals....