Loading...
Search for: bioadhesion
0.004 seconds

    Fabrication of in Situ Forming Bioadhesive Hydrogel for Cartilage Tissue Engineering

    , M.Sc. Thesis Sharif University of Technology Abdolmaleki, Hamid (Author) ; Mashayekhan, Shohreh (Supervisor) ; Hasanzadeh, Zabihollah (Supervisor)
    Abstract
    In recent years, many efforts have been made in tissue engineering and new methods for the treatment of cartilage damage, with an emphasis on their non-invasive and less aggressive nature. Meanwhile, injectable and in situ forming hydrogels have been considered as a less invasive nature. On the other hand, lack of enough mechanical properties in these hydrogels is one of their main problem. In this study, gelatin and alginate was used to fabricate hydrogel as interpenetrating network (IPN) hydrogel and silica nano particles were also used to increase mechanical properties in the fabricating of hydrogels. Gelatin is also combined with dopamine in order to induce bio adhesive properties of... 

    Particles in coronary circulation: A review on modelling for drug carrier design

    , Article Materials and Design ; Volume 216 , 2022 ; 02641275 (ISSN) Forouzandehmehr, M ; Ghoytasi, I ; Shamloo, A ; Ghosi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Atherosclerotic plaques and thrombosis are chronic inflammatory complications and the main manifestations of cardiovascular diseases (CVD), the leading cause of death globally. Achieving non/minimal-invasive therapeutic means for these implications in the coronary network is vital and has become an interdisciplinary concern. Accordingly, smart drug delivery systems, specifically based on micro- and nanoparticles, as a promising method to offer non/minimal-invasive therapeutic mechanisms are under active research. Notably, computational models enable us to study, design, and predict treatment strategies based on smart drug delivery systems with less time and cost compared with conventional... 

    In silico study of patient-specific magnetic drug targeting for a coronary LAD atherosclerotic plaque

    , Article International Journal of Pharmaceutics ; Volume 559 , 2019 , Pages 113-129 ; 03785173 (ISSN) Shamloo, A ; Amani, A ; Forouzandehmehr, M ; Ghoytasi, I ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Coronary artery disease is the first cause of death across the world. Targeted delivery of therapeutics through controlled release of micro- and nano-particles remains a very capable approach to develop new strategies in treating restenosis and atherosclerotic plaques. In this research, to produce the arterial geometry, an image-processing was done using CT-scan images of a LAD coronary artery. After implementing the finite element mesh, the Fluid-Structure Interaction (FSI) simulation based on physiological boundary conditions was performed. Next, a Lagrangian description of particles dynamics in a non-Newtonian blood flow considering momentum equation of motion for each particle and the...