Loading...
Search for: binary-manipulator
0.009 seconds

    A new obstacle avoidance method for discretely actuated hyper-redundant manipulators

    , Article Scientia Iranica ; Volume 19, Issue 4 , August , 2012 , Pages 1081-1091 ; 10263098 (ISSN) Motahari, A ; Zohoor, H ; Habibnejad Korayem, M ; Sharif University of Technology
    Elsevier  2012
    Abstract
    In this paper, a new method is proposed for solving the obstacle avoidance problem of discretely actuated hyper-redundant manipulators. In each step of the solution, the closest collision to the base is removed and then the configuration of the next part of the manipulator is modified without considering the obstacles. This process is performed repeatedly until no collision is found. The Suthakorn method is applied to solve the inverse kinematics problem. Two new ideas are proposed to reduce the errors of this method: the two-by-two searching method, and iterations. To verify the proposed method, some problems are solved numerically for 2D and 3D manipulators, each in two different obstacle... 

    A new motion planning method for discretely actuated hyper-redundant manipulators

    , Article Robotica ; Volume 35, Issue 1 , 2017 , Pages 101-118 ; 02635747 (ISSN) Motahari, A ; Zohoor, H ; Habibnejad Korayem, M ; Sharif University of Technology
    Cambridge University Press  2017
    Abstract
    A hyper-redundant manipulator is made by mounting the serial and/or parallel mechanisms on top of each other as modules. In discrete actuation, the actuation amounts are a limited number of certain values. It is not feasible to solve the kinematic analysis problems of discretely actuated hyper-redundant manipulators (DAHMs) by using the common methods, which are used for continuous actuated manipulators. In this paper, a new method is proposed to solve the trajectory tracking problem in a static prescribed obstacle field. To date, this problem has not been considered in the literature. The removing first collision (RFC) method, which is originally proposed for solving the inverse kinematic... 

    A new motion planning method for discretely actuated hyper-redundant manipulators

    , Article Robotica ; February , 2015 ; 02635747 (ISSN) Motahari, A ; Zohoor, H ; Habibnejad Korayem, M ; Sharif University of Technology
    Cambridge University Press  2015
    Abstract
    A hyper-redundant manipulator is made by mounting the serial and/or parallel mechanisms on top of each other as modules. In discrete actuation, the actuation amounts are a limited number of certain values. It is not feasible to solve the kinematic analysis problems of discretely actuated hyper-redundant manipulators (DAHMs) by using the common methods, which are used for continuous actuated manipulators. In this paper, a new method is proposed to solve the trajectory tracking problem in a static prescribed obstacle field. To date, this problem has not been considered in the literature. The removing first collision (RFC) method, which is originally proposed for solving the inverse kinematic...