Loading...
Search for: binary-alloys
0.009 seconds
Total 126 records

    Production of (Nd,MM)2(Fe,Co,Ni)14B-type sintered magnets using a binary powder blending technique

    , Article Journal of Alloys and Compounds, Lausanne ; Volume 298, Issue 1-2 , 2000 , Pages 319-323 ; 09258388 (ISSN) Madaah Hosseini, H. R ; Kianvash, A ; Seyyed Reihani, M ; Yoozbashi Zadeh, H ; Sharif University of Technology
    Elsevier Science S.A  2000
    Abstract
    The anisotropic (Nd,MM)2(Fe,Co,Ni)14B-type magnets were produced using the binary alloy sintering method (MM denotes a Misch-metal). The composition of the master alloy was close to stoichiometric Nd2Fe14B compound, while that of the sintering aid was MM38.2Co46.4Ni15.4. The microstructures of sintered magnets were investigated using a scanning electron microscope (SEM) equipped with an energy dispersive X-ray detector (EDX). X-ray diffractometry (XRD) was also employed for phase analysis. The optimum magnetic properties were obtained for a composition of Nd11.9MM2.9Fe73.9Co3.3Ni1.1B6.9 made of 90 wt.% master alloy and 10 wt.% sintering aid. The two main phases, i.e. the (RE)2(TM)14B phase... 

    Nitinol spinal vertebrae: A favorable new substitute

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 32, Issue 6 , 2019 , Pages 842-851 ; 1728144X (ISSN) Sadrnezhaad, S. K ; Parsafar, M ; Rashtiani, Y ; Jadidi, M ; Sharif University of Technology
    Materials and Energy Research Center  2019
    Abstract
    Scoliosis, kyphosis, and bone fracture are health problems, especially of the elderly throughout the world. The vertebra protects the spinal cord. Any impairment to the vertebra can lead to pain and nervousness. NiTi alloy (Nitinol) helps to resolve the problem by fulfilling such requirements as for strength, durability, resistance to wear, and shockwave damping which is due to the shape memory effect. Nitinol medical applications have so far been restricted to surgical devices and orthopaedics. Little has been said about Nitinol use for medication of the spinal vertebra disorder. This article appraises the potential features of Nitinol for vertebral implantation and therapeutic prescription... 

    A computational thermodynamics approach to the Gibbs-Thomson effect

    , Article Materials Science and Engineering A ; Volume 443, Issue 1-2 , 2007 , Pages 178-184 ; 09215093 (ISSN) Shahandeh, S ; Nategh, S ; Sharif University of Technology
    2007
    Abstract
    In two-phase system, curvature of interface leads to increase of solute concentration in matrix. This effect plays a significant role in solidification, precipitation, nucleation and growth and coarsening. There are number of models and formulas for Gibbs-Thomson effect in binary alloys. In this paper with the help of CALPHAD calculations, new approach for describing this effect in binary and multicomponent systems is proposed. In this generalized method no traditional simplifying assumption are considered and this yield to more accurate result for Gibbs-Thomson phenomenon. This model is compared with previous formulas in some case alloying systems. © 2006 Elsevier B.V. All rights reserved  

    Using nucleators to control freckles in unidirectional solidification

    , Article Experimental Thermal and Fluid Science ; Volume 33, Issue 8 , 2009 , Pages 1209-1215 ; 08941777 (ISSN) Shafii, M. B ; Alavi Dehkordi, E ; Esmaily Moghadam, M ; Mohseni Koochesfahani, M ; Sharif University of Technology
    2009
    Abstract
    Buoyancy-induced fluid flow, which is responsible for most forms of macro-segregation and channel-type segregates in castings, is not directly controllable. If left uncontrolled, natural convection will contribute to non-uniform distribution of alloy constituents and grain structure during solidification of a casting. Non-uniform distribution of chemical composition and physical structure in an alloy casting can significantly affect the reliability of mechanical components. Therefore, materials with acceptable defects can be produced only by trial-and-error and their acceptability is determined by costly inspections. We present a novel technique to control the formation of chimneys and... 

    Phase segregation susceptibility of ZA27 alloy at different shear rates

    , Article 9th International Conference on Semi-Solid Processing of Alloys and Composites, S2P 2006, Busan, 11 September 2006 through 13 September 2006 ; Volume 116-117 , 2006 , Pages 225-230 ; 10120394 (ISSN); 3908451264 (ISBN); 9783908451266 (ISBN) Mola, J ; Aashuri, H ; Shalchi, B ; Sharif University of Technology
    Trans Tech Publications Ltd  2006
    Abstract
    Back extrusion technique was employed to characterize phase segregation tendency of mechanically stirred ZA27 alloy at different deformation rates. Variation of segregation intensity with ram diameter was found to follow opposite trends at low and high ram speeds. At sufficiently high ram speeds, small rams are of better performance in minimizing segregation whereas at low ram speeds, large rams result in less pronounced segregation. In addition, increasing ram speed invariably decreases segregation degree. Back extrusion at very high shear rates provided via a Drop Extruder Apparatus capable of displacing ram at speeds in excess of 1m/s results in production of very homogeneous products in... 

    Diffusion brazing of Ti–6Al–4V and AISI 304: an EBSD study and mechanical properties

    , Article Journal of Materials Science ; Volume 52, Issue 20 , 2017 , Pages 12467-12475 ; 00222461 (ISSN) Norouzi, E ; Shamanian, M ; Atapour, M ; Khosravi, B ; Sharif University of Technology
    Abstract
    Ti–6Al–4V and AISI 304 stainless steel were joined by diffusion brazing with a Cu interlayer at 900 °C for different bonding times. The influence of the bonding time on the joint width, microstructure, microhardness and shear strength was studied. Interfacial characterizations and the identification of phases were done by scanning electron microscopy and electron backscatter diffraction (EBSD). The results revealed that by increasing the bonding time, the thickness of the joint was first increased and then decreased. Microstructure examinations also showed that the joints consisted of several intermetallics such as TiCu, Ti2Cu, TiCu4, TiCu2, FeTi and Fe2Ti. On the other hand, EBSD results... 

    Stimuli-responsive emissive behavior of 1- and 1,3-connectivities in azulene-based imine ligands: Cycloplatination and Pt-Tl dative bond formation

    , Article Dalton Transactions ; Volume 46, Issue 34 , 2017 , Pages 11327-11334 ; 14779226 (ISSN) Jamali, S ; Mousavi, N. A ; Bagherzadeh, M ; Kia, R ; Samouei, H ; Sharif University of Technology
    Royal Society of Chemistry  2017
    Abstract
    The preparation of two new azulene-based imine ligands N-(2,6-diisopropylphenyl)-6-tBu-1-azulenylmethaneimine, 3, and N-(2,6-diisopropylphenyl)-6-tBu-3-(2,6-diisopropylphenyliminomethyl)-1-azulenylmethaneimine, 4, is described. These imine ligands display stimuli responsive emissive behavior and their fluorescence can be switched on and off by protonation and neutralization with trifluoroacetic acid and trimethylamine, respectively. The cyclometalation of the monoimine ligand by platinum gave the cyclometalated complex [PtMe(SMe2)(3′)], 5, (where the prime denotes the cyclometalated ligand 3). The reaction of 5 with TlPF6 yields the trinuclear bent Pt2Tl complex {[PtMe(SMe2)(3′)]2(μ-Tl)}PF6,... 

    Nanoporous gold as a suitable substrate for preparation of a new sensitive electrochemical aptasensor for detection of salmonella typhimurium

    , Article Sensors and Actuators, B: Chemical ; Volume 255 , 2018 , Pages 1536-1544 ; 09254005 (ISSN) Ranjbar, S ; Shahrokhian, S ; Nurmohammadi, F ; Sharif University of Technology
    Elsevier B.V  2018
    Abstract
    Nowadays, achievement to easy, fast, reliable and cost-effective techniques and tools is one of the most important challenges in detection of microorganisms. Salmonella typhimurium is one of the most important pathogenic bacteria that affect the human health and environmental infections. In this work we report a new, stable, biocompatible and cost-effective platform for construction of an aptasensor based on nanoporous gold (NPG) for detection of S. typhimurium. Nanoporous gold is electrochemically synthesized using Au-Cu alloy at the surface of Au/GCE. Thiol functionalized aptamer is used for effective linking to the surface of NPG/Au/GCE via self-assemble monolayers (SAMs) formation.... 

    The effect of chemical composition on enthalpy and entropy changes of martensitic transformations in binary NiTi shape memory alloys

    , Article Journal of Alloys and Compounds ; Volume 487, Issue 1-2 , 2009 , Pages 363-366 ; 09258388 (ISSN) Khalil Allafi, J ; Amin Ahmadi, B ; Sharif University of Technology
    2009
    Abstract
    In the present research work the binary NiTi alloys with various compositions in the range of 50.3-51 at.% Ni were used. Samples have been annealed at 850 °C for 15 min and then quenched in water. In order to characterize transformation temperatures and enthalpy changes of the forward and the reverse martensitic transformation, Differential Scanning Calorimetric (DSC) experiments were performed. The enthalpy and entropy changes as a function of Ni atomic content have been thermodynamically investigated. Results show that enthalpy and entropy changes of martensitic transformation decrease when Ni atomic content increases. The variation of enthalpy and entropy of martensitic transformation... 

    Effect of solid fraction, grain misorientation and grain boundary energy on solidification cracking in weld of Al-Cu aluminum alloys

    , Article Materials Research Express ; Volume 6, Issue 8 , 2019 ; 20531591 (ISSN) Bodaghi, F ; Movahedi, M ; Kokabi, A. H ; Tavakoli, R ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Solidification cracking is one the most common types of cracking in the weld of the aluminum alloys. Although some numerical models have been developed for investigation of the solidification cracking, the effect of the grain misorientation on the solidification cracking susceptibility (SCS) of a weld has rarely been considered. This work studies the effect of the angle between the primary arms of the dendrites on the SCS. Hence, a solidification cracking model was developed given the grain misorientation in the convergence condition. The model was investigated for Al-Cu alloys. When the grain boundary energy was considered in the model, there was an increase in the SCS for misorientation... 

    Phase transitions in the binary-alloy Hubbard model: Insights from strong-coupling perturbation theory

    , Article Physical Review B ; Volume 99, Issue 1 , 2019 ; 24699950 (ISSN) Adibi, E ; Habibi, A ; Jafari, S. A ; Sharif University of Technology
    American Physical Society  2019
    Abstract
    In the binary alloy with composition AxB1-x of two atoms with ionic energy scales ±Δ, an apparent Anderson insulator (AI) is obtained as a result of randomness in the position of atoms. Using our recently developed technique that combines the local self-energy from strong-coupling perturbation theory with the transfer matrix method, we are able to address the problem of adding a Hubbard U to the binary-alloy problem for millions of lattice sites on the honeycomb lattice. By adding the Hubbard interaction U, the resulting AI phase will become metallic, which in our formulation can be manifestly attributed to the screening of disorder by Hubbard U. Upon further increase in U, again the AI... 

    Universal correlation between the thermodynamic potentials and some physical quantities of metallic glasses as a function of cooling rate during molecular dynamics simulation

    , Article Journal of Non-Crystalline Solids ; Volume 536 , 2020 Ghaemi, M ; Tavakoli, R ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    The existence of universal semi-log linear relation between potential energy and cooling rate during the molecular dynamics simulations of metallic glasses for Cu-Zr system was formerly reported. For this purpose, different classes of metallic glasses are considered and the validity of this correlation is studied. It is shown that it holds for other thermodynamics potentials and some physical quantities like density and Wendt and Abraham parameter, too. This observation enables us to economically construct atomic scale metallic glass structures equivalent to very low cooling rates, more consistent to experimental works, not accessible using classic molecular simulations. © 2020 Elsevier B.V  

    Construction of a ternary nanocomposite, polypyrrole/fe-co sulfide-reduced graphene oxide/nickel foam, as a novel binder-free electrode for high-performance asymmetric supercapacitors

    , Article Journal of Physical Chemistry C ; Volume 124, Issue 8 , 2020 , Pages 4393-4407 Karimi, A ; Kazeminezhad, I ; Naderi, L ; Shahrokhian, S ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    The development of asymmetric supercapacitors requires the design of electrode construction and the utilization of new electroactive materials. In this regard, an effective strategy is the loading of active materials on an integrated 3D porous graphene-based substrate such as graphene foam (GF). Herein, we successfully designed and fabricated a novel ternary binder-free nanocomposite consisting of polypyrrole, Fe-Co sulfide, and reduced graphene oxide on a nickel foam electrode (PPy/FeCoS-rGO/NF) via a facile, cost-effective, and powerful electrodeposition method for application in high-performance asymmetric supercapacitors. The monolithic 3D porous graphene foam (GF) obtained by the facile... 

    Effect of two steps annealing on the microstructure and dynamic strain aging behavior of Al-6Mg alloy

    , Article Materials Science and Engineering A ; Volume 798 , 2020 Saadat, Z ; Khani Moghanaki, S ; Kazeminezhad, M ; Goodarzi, M ; Ghiasi Afjeh, S. M. B ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The microstructure of cold rolled Al–6Mg alloy is investigated after two steps annealing at different coupled temperatures of 250–320 °C and 320–400 °C for various times. Dynamic strain aging behavior in terms of serrated flow and strain rate sensitivity is investigated. The effect of three microstructural features, cell structure, recovered and recrystallized microstructures, on the strain rate sensitivity is elucidated. Two steps annealing process is utilized to capture the effect of recovery and precipitation phenomena on recrystallization and dynamic strain aging behaviors. The results show that the negative strain rate sensitivity of cold rolled specimen increases to positive values in... 

    Effect of graphene and process parameters on mechanical performance and electrical resistance of aluminum to copper friction stir joint

    , Article Materials Research Express ; Volume 6, Issue 4 , 2019 ; 20531591 (ISSN) Montazerian, M. H ; Movahedi, M ; Jondi, M. R ; Sharif University of Technology
    Institute of Physics Publishing  2019
    Abstract
    Effects of graphene, tool rotational speed and pass number were studied on the reliability and electrical resistance of the aluminum to copper friction stir welds. Addition of graphene was an effective solution to overcome the increase in the electrical resistance of the aluminum/copper joints. Indeed, presence of graphene decreased the electrical resistance of the joints to the values comparable with that of the copper base metal. However, joint tensile strength was not affected significantly by graphene. Decrease in the tool rotational speed improved the dispersion of the graphene particles and tensile strength, while reduced the electrical resistance. Tensile strength of the joint reached... 

    Joining metals by combining mechanical stirring and thermomechanical treatment to form a globular weld structure

    , Article Solid State Phenomena ; Volume 116-117 , 2006 , Pages 397-401 ; 10120394 (ISSN) Shalchi Amirkhiz, B ; Aashuri, H ; Kokabi, A. H ; Abbasi Gharacheh, M ; Mola, J ; Sharif University of Technology
    Trans Tech Publications Ltd  2006
    Abstract
    A method for joining metals in the semisolid state is presented. A model alloy Sn-15%Pb was used to demonstrate the concept. By presented process, dendritic microstructure of the weld zone can be avoided. Moreover, near-weld zone of the cold worked substrates which is affected by heat would have a globular structure due to a thermomechanical treatment. The two substrates were heated up locally in the joint line to the semisolid temperature range. At this point a stirrer was introduced into the weld seam in order to mix the two sides into a single uniform joint. Localized mechanical properties of different zones were examined using Shear Punch Test (SPT), showing a good strength in the weld... 

    A hybrid scaffold of gelatin glycosaminoglycan matrix and fibrin as a carrier of human corneal fibroblast cells

    , Article Materials Science and Engineering C ; Volume 118 , 2021 ; 09284931 (ISSN) Hajian Foroushani, Z ; Mahdavi salimi, S ; Abdekhodaie, M. J ; Baradaran Rafii, A ; Tabatabei, M. R ; Mehrvar, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    A hybrid scaffold of gelatin-glycosaminoglycan matrix and fibrin (FGG) has been synthesized to improve the mechanical properties, degradation time and cell response of fibrin-like scaffolds. The FGG scaffold was fabricated by optimizing some properties of fibrin-only gel and gelatin-glycosaminoglycan (GG) scaffolds. Mechanical analysis of optimized fibrin-only gel showed the Young module and tensile strength of up to 72 and 121 KPa, respectively. Significantly, the nine-fold increase in the Young modulus and a seven-fold increase in tensile strength was observed when fibrin reinforced with GG scaffold. Additionally, the results demonstrated that the degradation time of fibrin was enhanced... 

    Intrinsically Ru-doped suboxide TiO2nanotubes for enhanced photoelectrocatalytic H2generation

    , Article Journal of Physical Chemistry C ; Volume 125, Issue 11 , 2021 , Pages 6116-6127 ; 19327447 (ISSN) Khorashadizade, E ; Mohajernia, S ; Hejazi, S ; Mehdipour, H ; Naseri, N ; Moradlou, O ; Moshfegh, A. Z ; Schmuki, P ; Sharif University of Technology
    American Chemical Society  2021
    Abstract
    In the present research, we investigate the synergistic effects of Ru-doping and Ar/H2 reduction treatment on the photoelectrochemical water splitting performance and hydrogen evolution rate of TiO2 nanotube array photoelectrodes. The Ti-Ru alloy with 0.2 at. % Ru was used to grow anodic self-organized Ru-doped TiO2 nanotube layers. An ideal synergy between Ar/H2 reduction treatment and Ru-doping results in the extended absorption toward the visible light region and improved photoelectrocatalytic activity. The black Ru-doped TiO2-x photoanode's water splitting rate improves remarkably (∼ninefold) compared to the black TiO2-x sample (∼twofold). Moreover, the black Ru-doped TiO2-x photoanode... 

    Structural, magnetic and dielectric properties of Dy-Co substituted Sr-Ba-Mg-based magnetic oxides

    , Article Applied Physics A: Materials Science and Processing ; Volume 127, Issue 11 , 2021 ; 09478396 (ISSN) Lodhi, M. Y ; Khan, M. A ; Majeed, A ; Akhtar, M. N ; Ahmad, M ; Hussain, A ; Islam, M ; Nasar, G ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In present research six samples of nano X-type hexagonal ferrites with general formula SrBaMg2-xCoxDyyFe28-yO46 (x = 0–1; y = 0–0.1 with step size of 0.2 and 0.02, respectively) were synthesized by sol–gel technique. The temperature required for the phase formation of these materials was estimated using thermogravimetric analysis. X-ray diffraction patterns revealed the pure phase of the prepared materials up to the doping concentration of x = 0.4, y = 0.04 along with the second phase for higher doping concentration. The secondary phase appeared due to the solubility limit of higher ionic radius Dy3+ ions into the hexagonal lattice. The mean crystalline size decreased from 29 to 18 nm while... 

    Fabrication of a microdialysis-based nonenzymatic microfluidic sensor for regular glucose measurement

    , Article Sensors and Actuators, B: Chemical ; Volume 333 , 2021 ; 09254005 (ISSN) Najmi, A ; Saidi, M. S ; Shahrokhian, S ; Hosseini, H ; Kazemzadeh Hannani, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Microdialysis-based continuous glucose measuring systems are desirable candidates for accurate and biologically safe monitoring of glucose level in diabetic patients. However, it is necessary to improve these systems by utilizing highly reliable non-enzymatic sensors instead of enzymatic ones, while lowering the size and lessening the dialysis fluid consumption. Our purpose is to design an implantable integrated microfluidic device for regular nonenzymatic microdialysis-based glucose measurement. We report a novel nonenzymatic microfluidic glucose sensor based on Pt-Ni nanoparticles - multiwalled carbon nanotubes/screen-printed carbon electrode (Pt-Ni NPs-MWCNTs/SPE). Devised microfluidic...