Loading...
Search for: atomistic-models
0.008 seconds

    Natural frequencies of C60, C70, and C80 fullerenes

    , Article Applied Physics Letters ; Volume 96, Issue 2 , 2010 ; 00036951 (ISSN) Sakhaee Pour, A ; Vafai, A ; Sharif University of Technology
    Abstract
    This letter adopts an atomistic modeling approach to study free vibrational characteristics of C60, C70, and C80 fullerenes. In this regard, we use the molecular structural mechanics consisting of equivalent structural beams to calculate the nonzero natural frequencies. The simulation results indicate that the first natural frequency of the fullerene is in the order terahertz and decreases nonlinearly with respect to the number of the carbon atoms  

    Nanoscale vibrational behavior of single-layered graphene sheets

    , Article ASME International Mechanical Engineering Congress and Exposition, IMECE 2007, Seattle, WA, 11 November 2007 through 15 November 2007 ; Volume 11 PART A , 2008 , Pages 229-235 ; 079184305X (ISBN); 9780791843055 (ISBN) Sakhaee Pour, A ; Ahmadian, M. T ; Vafai, A ; Sharif University of Technology
    2008
    Abstract
    Molecular structural mechanics approach is implemented to investigate vibrational behavior of single-layered graphene sheets. By using the atomistic modeling, mode shapes and natural frequencies are obtained. Vibration analysis is performed under different chirality and boundary conditions. Numerical results from the finite element technique are applied to develop empirical equations via a statistical multiple non-linear regression model. With the proposed empirical equations, fundamental frequencies of single-layered graphene sheets under considered boundary conditions can be predicted within 3 percent accuracy. Copyright © 2007 by ASME  

    A deep look into the dynamics of saltwater imbibition in a calcite nanochannel: temperature impacts capillarity regimes

    , Article Langmuir ; Volume 36, Issue 31 , 2020 , Pages 9035-9046 Badizad, M. H ; Koleini, M. M ; Greenwell, H. C ; Ayatollahi, S ; Ghazanfari, M. H ; Sharif University of Technology
    American Chemical Society  2020
    Abstract
    This research concerns fundamentals of spontaneous transport of saltwater (1 mol·dm-3 NaCl solution) in nanopores of calcium carbonates. A fully atomistic model was adopted to scrutinize the temperature dependence of flow regimes during solution transport under CaCO3 nanoconfinement. The early time of capillary filling is inertia-dominated, and the solution penetrates with a near-planar meniscus at constant velocity. Following a transition period, the meniscus angle falls to a stabilized value, characterizing the capillary-viscous advancement in the calcite channel. At this stage, brine displacement follows a parabolic relationship consistent with the classical Lucas-Washburn (LW) theory.... 

    Van der Waals energy surface of a carbon nanotube sheet

    , Article Solid State Communications ; Volume 152, Issue 3 , February , 2012 , Pages 225-230 ; 00381098 (ISSN) Motahari, S ; Shayeganfar, F ; Neek Amal, M ; Sharif University of Technology
    Abstract
    The van der Walls interaction between a carbon nanotube sheet (CNTS) and a rare gas atom, is studied using both atomistic and continuum approaches. We present analytical expressions for the van der Waals energy of continuous nanotubes interacting with a rare gas atom. It is found that the continuum approach does not properly treat the effect of atomistic configurations on the energy surfaces. The energy barriers are small as compared to the thermal energy, which implies the free motion above the CNTS in heights about one nanometer. In contrast to the energy surface of a graphene sheet, the honeycomb lattice structure in the energy surface of a CNTS is imperceivable. Defects alter the energy... 

    Potential application of single-layered graphene sheet as strain sensor

    , Article Solid State Communications ; Volume 147, Issue 7-8 , August , 2008 , Pages 336-340 ; 00381098 (ISSN) Sakhaee Pour, A ; Ahmadian, M. T ; Vafai, A ; Sharif University of Technology
    2008
    Abstract
    Molecular structural mechanics is implemented to investigate the vibrational characteristics of defect-free single-layered graphene sheets (SLGSs), which have potential applications as strain sensors. The effect of strain on the fundamental frequencies of the defect-free zigzag and armchair models with clamped-clamped boundary condition is studied. The atomistic modeling results reveal while sensitivities of the strain sensors are not influenced significantly by chirality, they can be slightly increased by decreasing aspect ratios of the sheets. It is further shown that the SLGSs-based strain sensors are more sensitive to the applied stretch than the SWCNTs versions. © 2008 Elsevier Ltd. All... 

    Nanoscale vibrational behavior of single-layered graphene sheets

    , Article ASME 2007 International Mechanical Engineering Congress and Exposition, IMECE 2007, 11 November 2007 through 15 November 2007 ; Volume 11 , 2007 , Pages 229-235 ; 079184305X (ISBN) Sakhaee-Pour, A ; Ahmadian, M. T ; Vafai, A ; ASME ; Sharif University of Technology
    American Society of Mechanical Engineers (ASME)  2007
    Abstract
    Molecular structural mechanics approach is implemented to investigate vibrational behavior of single-layered graphene sheets. By using the atomistic modeling, mode shapes and natural frequencies are obtained. Vibration analysis is performed under different chirality and boundary conditions. Numerical results from the finite element technique are applied to develop empirical equations via a statistical multiple nonlinear regression model. With the proposed empirical equations, fundamental frequencies of single-layered graphene sheets under considered boundary conditions can be predicted within 3 percent accuracy. Copyright © 2007 by ASME  

    Multi-scale modeling of surface effect via the boundary Cauchy-Born method

    , Article International Journal for Numerical Methods in Engineering ; Volume 85, Issue 7 , August , 2011 , Pages 827-846 ; 00295981 (ISSN) Qomi, M. J. A ; Aghaei, A ; Khoei, A. R ; Sharif University of Technology
    2011
    Abstract
    In this paper, a novel multi-scale approach is developed for modeling of the surface effect in crystalline nano-structures. The technique is based on the Cauchy-Born hypothesis in which the strain energy density of the equivalent continua is calculated by means of inter-atomic potentials. The notion of introducing the surface effect in the finite element method is based on the intrinsic function of quadratures, called as an indicator of material behavior. The information of quadratures is derived by interpolating the data from probable representative atoms in their proximity. The technique is implemented by the definition of reference boundary CB elements, which enable to capture not only... 

    Effect of vacancy defects on the fundamental frequency of carbon nanotubes

    , Article 3rd IEEE International Conference on Nano/Micro Engineered and Molecular Systems, NEMS 2008, Sanya, 6 January 2008 through 9 January 2008 ; 2008 , Pages 1000-1004 ; 9781424419081 (ISBN) Pirmoradian, M ; Ahmadian, M. T ; Asempour, A ; Tajalli, S. A
    2008
    Abstract
    Carbon nanotubes are widely used in the design of nanosensors and actuators. Any defect in the manufactured nanotube plays an important role in the natural frequencies of these structures. In this paper, the effect of vacancy defects on the vibration of carbon nanotubes is investigated by using an atomistic modeling technique, called the molecular structural mechanics method. Vibration analysis is performed for armchair and zigzag nanotubes with cantilever boundary condition. The shift of the principal frequency of the nanotube with vacancy defect at different locations on the length is plotted. The results indicate that the frequency of the defective nanotube can be larger or smaller or... 

    Temperature-dependent multi-scale modeling of surface effects on nano-materials

    , Article Mechanics of Materials ; Volume 46 , 2012 , Pages 94-112 ; 01676636 (ISSN) Khoei, A. R ; Ghahremani, P ; Sharif University of Technology
    Abstract
    In this paper, a novel temperature-dependent multi-scale method is developed to investigate the role of temperature on surface effects in the analysis of nano-scale materials. In order to evaluate the temperature effect in the micro-scale (atomic) level, the temperature related Cauchy-Born hypothesis is implemented by employing the Helmholtz free energy, as the energy density of equivalent continua relating to the inter-atomic potential. The multi-scale technique is applied in atomistic level (nano-scale) to exhibit the temperature related characteristics. The first Piola-Kirchhoff stress and tangential stiffness tensor are computed, as the first and second derivatives of the free energy...