Loading...
Search for: artery
0.009 seconds
Total 112 records

    Artificial neural network for predicting the safe temporary artery occlusion time in intracranial aneurysmal surgery

    , Article Journal of Clinical Medicine ; Volume 10, Issue 7 , 2021 ; 20770383 (ISSN) Shahjouei, S ; Ghodsi, S. M ; Zangeneh Soroush, M ; Ansari, S ; Kamali Ardakani, S ; Sharif University of Technology
    MDPI  2021
    Abstract
    Background. Temporary artery clipping facilitates safe cerebral aneurysm management, besides a risk for cerebral ischemia. We developed an artificial neural network (ANN) to predict the safe clipping time of temporary artery occlusion (TAO) during intracranial aneurysm surgery. Method. We devised a three-layer model to predict the safe clipping time for TAO. We considered age, the diameter of the right and left middle cerebral arteries (MCAs), the diameter of the right and left A1 segment of anterior cerebral arteries (ACAs), the diameter of the anterior communicating artery, mean velocity of flow at the right and left MCAs, and the mean velocity of flow at the right and left ACAs, as well... 

    Effects of Crimping on Mechanical Performance of Nitinol Stent Designed for Femoral Artery: Finite Element Analysis [electronic resource]

    , Article Journal of Materials Engineering and Performance ; November 2013, Volume 22, Issue 11, pp 3228-3236 Nematzadeh, F. (Fardin) ; Sadrnezhaad, K ; Sharif University of Technology
    Abstract
    Nitinol stents are used to minimize improper dynamic behavior, low twistability, and inadequate radial mechanical strength of femoral artery stents. In this study, finite element method is used to investigate the effect of crimping and Austenite finish temperature (A f) of Nitinol on mechanical performance of Z-shaped open-cell femoral stent under crimping conditions. Results show that low A f Nitinol has better mechanical and clinical performance due to small chronic outward force, large radial resistive force, and appropriate superelastic behavior  

    Primary stenosis progression versus secondary stenosis formation in the left coronary bifurcation: a mechanical point of view

    , Article Biocybernetics and Biomedical Engineering ; Volume 39, Issue 1 , 2019 , Pages 188-198 ; 02085216 (ISSN) Jahromi, R ; Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Sp. z o.o  2019
    Abstract
    Biomechanical forces and hemodynamic factors influence the blood flow and the endothelial cells (ECs) morphology. These factors behave differently beyond the coronary artery stenosis. In the present study, unsteady blood flow in the left coronary artery (LCA) and its atherosclerotic bifurcating vessels, left anterior descending (LAD) and left circumflex (LCX) arteries, were numerically simulated to investigate the risk of plaque length development and secondary plaque formation in the post-stenotic areas. Using fluid–structure interaction (FSI) model, compliance of arterial wall and vessel curvature variations due to cardiac motion were considered. The arteries included plaques at the... 

    Primary stenosis progression versus secondary stenosis formation in the left coronary bifurcation: a mechanical point of view

    , Article Biocybernetics and Biomedical Engineering ; Volume 39, Issue 1 , 2019 , Pages 188-198 ; 02085216 (ISSN) Jahromi, R ; Pakravan, H. A ; Saidi, M. S ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Sp. z o.o  2019
    Abstract
    Biomechanical forces and hemodynamic factors influence the blood flow and the endothelial cells (ECs) morphology. These factors behave differently beyond the coronary artery stenosis. In the present study, unsteady blood flow in the left coronary artery (LCA) and its atherosclerotic bifurcating vessels, left anterior descending (LAD) and left circumflex (LCX) arteries, were numerically simulated to investigate the risk of plaque length development and secondary plaque formation in the post-stenotic areas. Using fluid–structure interaction (FSI) model, compliance of arterial wall and vessel curvature variations due to cardiac motion were considered. The arteries included plaques at the... 

    Simulation of NO Production Process from Endothelial Cells and its Effect on Coronary Artery Flow Field

    , M.Sc. Thesis Sharif University of Technology Shahriari, Amir Hossein (Author) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    Endothelial derived nitric oxide (NO) and its role in regulating the physiological conditions of blood vessels is one of the favorite topics among researchers. The majority of previous studies have focused on nitric oxide transport in blood vessels, less attention has been paid to its vasodilative effects in blood vessels. The main aim of this study is to propose an integrated model to study the effects of endothelial-derived nitric oxide on hemodynamic conditions of blood vessels. Nitric oxide is produced by endothelial cells upon exposure to mechanical forces such as hemodynamic shear stress. The synthesized nitric oxide then diffuses into the neighboring vascular smooth cells, where it... 

    Investigation and Development of an Interpretable Machine Learning Model in Therapeutic Applications by Providing Solutions to Change the Condition of Patients

    , M.Sc. Thesis Sharif University of Technology Damandeh, Moloud (Author) ; Haji, Alireza (Supervisor)
    Abstract
    Despite the significant progress of machine learning models in the health domain, current advanced methods usually produce non-transparent and black-box models, and for this reason, they are not widely used in medical decision-making. To address the issue of non-transparency in black-box models, interpretable machine learning models have been developed. In the health domain, counterfactual scenarios can provide personalized explanations for predictions and suggest necessary changes to transition from an undesirable outcome class to a desirable one for physicians. The aim of this study is to present an interpretable machine learning framework in the health domain that, in addition to having... 

    Effect of Stenotic Carotid Geometry on Flow and Stroke-risk

    , M.Sc. Thesis Sharif University of Technology Amirkhosravi, Mehrad (Author) ; Firoozabadi, Bahar (Supervisor) ; Saeedi, Saeed (Supervisor)
    Abstract
    Carotid bifurcation is one of the most important bifurcations in human body which has a lot of curvature in some people. The common carotid artery bifurcates into an internal carotid artery (ICA) and an external carotid artery (ECA). The incidence of stenosis in carotid bifurcation and in particular in the internal carotid artery is of special importance. In the United States of America by 2006, nearly 700000 strokes occur each year, with about 160000 deaths and 20 to 30% of strokes are caused by stenotic carotid that cost estimated at $160 billion. The purpose of this thesis is to investigate in hemodynamic factors of blood flow such as velocity variation, vortex patterns, shear stress and... 

    Diagnosis of coronary artery disease using data mining techniques based on symptoms and ECG features

    , Article European Journal of Scientific Research ; Volume 82, Issue 4 , Aug , 2012 , Pages 542-553 ; 1450216X (ISSN) Alizadehsani, R ; Habibi, J ; Hosseini, M. J ; Boghrati, R ; Ghandeharioun, A ; Bahadorian, B ; Sani, Z. A ; Sharif University of Technology
    EuroJournals, Inc  2012
    Abstract
    The most common heart disease is Coronary artery disease (CAD). CAD is one of the main causes of heart attacks and deaths across the globe. Early diagnosis of this disease is therefore, of great importance. A large number of methods have thus far been devised for diagnosing CAD. Most of these techniques have been conducted on the basis of the Irvine dataset (University of California), which not only has a limited number of features but is also full of missing values and thus lacks reliability. The present study was designed to seek a new set, free from missing values, comprising features such as the functional class, dyspnea, Q wave, ST elevation, ST depression, and T inversion. Information... 

    Nanotechnology in diagnosis and treatment of coronary artery disease

    , Article Nanomedicine ; Volume 11, Issue 5 , 2016 , Pages 513-530 ; 17435889 (ISSN) Karimi, M ; Zare, H ; Bakhshian Nik, A ; Yazdani, N ; Hamrang, M ; Mohamed, E ; Sahandi Zangabad, P ; Moosavi Basri, S. M ; Bakhtiari, L ; Hamblin, M. R ; Sharif University of Technology
    Future Medicine Ltd 
    Abstract
    Nanotechnology could provide a new complementary approach to treat coronary artery disease (CAD) which is now one of the biggest killers in the Western world. The course of events, which leads to atherosclerosis and CAD, involves many biological factors and cellular disease processes which may be mitigated by therapeutic methods enhanced by nanotechnology. Nanoparticles can provide a variety of delivery systems for cargoes such as drugs and genes that can address many problems within the arteries. In order to improve the performance of current stents, nanotechnology provides different nanomaterial coatings, in addition to controlled-release nanocarriers, to prevent in-stent restenosis.... 

    Exact simulating of human arteries using lumped model and probing constriction in femoral and carotid arteries

    , Article American Journal of Applied Sciences ; Volume 6, Issue 5 , 2009 , Pages 834-842 ; 15469239 (ISSN) Mirzaee, M. R ; Ghasemalizadeh, O ; Firoozabadi, B ; Sharif University of Technology
    2009
    Abstract
    Problem statement: Modeling Human cardiovascular system was always an important issue from long past because by doing such modeling, investigation in cardiovascular system and its abnormities would be simpler. One of the most effective ways to do such modeling is using lumped method (Electrical analogy). Approach: Lumped method was used for simulating a complete model in this approach. A 36-vessel model was chosen to make equivalent circuit of lumped method from it. This complicated circuit includes equivalent segment for arteries, pulmonary, atrium, left and right ventricles. Furthermore, in this complex circuit some additional points were considered to improve this method. Some of the most... 

    Fluid-structure interaction simulation of blood flow and cerebral aneurysm: effect of partly blocked vessel

    , Article Journal of Vascular Research ; Volume 56, Issue 6 , 2019 , Pages 296-307 ; 10181172 (ISSN) Saeedi, M ; Shamloo, A ; Mohammadi, A ; Sharif University of Technology
    S. Karger AG  2019
    Abstract
    In this study, using fluid-structure interaction (FSI), 3-dimensional blood flow in an aneurysm in the circle of Willis-which is located in the middle cerebral artery (MCA)-has been simulated. The purpose of this study is to evaluate the effect of a partly blocked vessel on an aneurysm. To achieve this purpose, two cases have been investigated using the FSI method: in the first case, an ideal geometry of aneurysm in the MCA has been simulated; in the second case, modeling is performed for an ideal geometry of the aneurysm in the MCA with a partly blocked vessel. All boundary conditions, properties and modeling methods were considered the same for both cases. The only difference between the... 

    Simulation of low density lipoprotein (LDL) permeation into multilayer coronary arterial wall: interactive effects of wall shear stress and fluid-structure interaction in hypertension

    , Article Journal of Biomechanics ; Volume 67 , 2018 , Pages 114-122 ; 00219290 (ISSN) Roustaei, M ; Nikmaneshi, M. R ; Firoozabadi, B ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Due to increased atherosclerosis-caused mortality, identification of its genesis and development is of great importance. Although, key factors of the origin of the disease is still unknown, it is widely believed that cholesterol particle penetration and accumulation in arterial wall is mainly responsible for further wall thickening and decreased rate of blood flow during a gradual progression. To date, various effective components are recognized whose simultaneous consideration would lead to a more accurate approximation of Low Density Lipoprotein (LDL) distribution within the wall. In this research, a multilayer Fluid-Structure Interaction (FSI) model is studied to simulate the penetration... 

    Stability of Coronary Arteries Arteriosclerosis Using Fluid-Structure Interaction

    , M.Sc. Thesis Sharif University of Technology Ebrahimi Hasratanloo, Sina (Author) ; Fallah Ragabzadeh, Famida (Supervisor)
    Abstract
    Coronary arteries often experience tortuosity under internal blood pressure and longitude axial twisting. Arterial tortuosity can enhance the stress concentration on the artery walls. Now if the coronary arteries suffer from atherosclerosis (a common disease among adults) the stress concentration on the tortuous artery plaque will be enhanced as well. Increased stress on the plaque may result in plaque rupture and its consequent damages. This study aims to investigate the stress concentration on the plaques and blood flow patterns within the coronary arteries with plaque. Moreover, the plaque growth was predicted taking into account various geometrical parameters including fibrous cap... 

    Numerical Investigation of Hypertension in Plaque Formation and Growth in Human Aorta

    , M.Sc. Thesis Sharif University of Technology Benvidi, Amir Abbas (Author) ; Firoozabadi, Bahar (Supervisor)
    Abstract
    Nowadays, cardiovascular diseases are among the most prevalent cause of death worldwide. Besides, atherosclerosis is a cardiovascular disease happening with the continuous narrowing of vessels, especially medium and large-sized arteries. Moreover, the human aorta is vulnerable to this phenomenon. Atherosclerosis happens when the excess LDL in the blood flow penetrates the arterial wall. Then, the LDL is oxidized, thereby recruiting monocytes as the response against oxidized LDL. After monocytes enter the arterial wall, they differentiate and become macrophages. Macrophages then transform into foam cells by ingesting the oxidized LDL. The fatty foam cells are eventually responsible for the... 

    Plaque structure affects mechanical stress distribution within blood vessels

    , Article Proceedings of the IASTED International Conference on Biomedical Engineering, BioMed 2014 ; 2014 , pp. 239-243 Mohseni, M ; Mehboudi, N ; Abdollahi, M ; Shamloo, A ; Naghdabadi, R ; Sharif University of Technology
    Abstract
    The main goal of this study is to investigate the effects of plaque structure on its stress distribution. Rupture of plaque causes cerebrovascular diseases which lead to high mortality rates all over the world. Computers are powerful tools to understand the mechanism of plaque rupture. In this study, 3D fluid structure interaction simulation is constructed in ABAQUS 6.13 to clarify the relation between stress distribution of plaque and its structure. A model of common carotid artery with distributed stenosis was chosen for the simulation. To investigate the effects of plaque structure on stress distribution, thickness of fibrous cap and lipid core size were varied in the stenosis.... 

    Analytical and numerical evaluation of steady flow of blood through artery

    , Article Biomedical Research (India) ; Volume 24, Issue 1 , 2013 , Pages 88-98 ; 0970938X (ISSN) Sedaghatizadeh, N ; Barari, A ; Soleimani, S ; Mofidi, M ; Sharif University of Technology
    2013
    Abstract
    Steady blood flow through a circular artery with rigid walls is studied by COSSERAT Continuum Mechanical Approach. To obtain the additional viscosities coefficients, feed forward multi-layer perceptron (MLP) type of artificial neural networks (ANN) and the results obtained in previous empirical works is used. The governing filed equations are derived and solution to the Hagen-Poiseuilli flow of a COSSERAT fluid in the artery is obtained analytically by Homotopy Perturbation Method (HPM) and numerically using finite difference method. Comparison of analytical results with numerical ones showed excellent agreement. In addition microrotation and the velocity profile along the radius are... 

    Effect of dyslipidemia on a simple morphological feature extracted from photoplethysmography flow mediated dilation

    , Article International Conference in Electronic Engineering and Computing Technology, London, 1 July 2009 through 3 July 2009 ; Volume 60 LNEE , 2010 , Pages 551-561 ; 18761100 (ISSN) ; 9789048187751 (ISBN) Zaheditochai, M ; Zahedi, E ; Mohd Ali, M. A ; Sharif University of Technology
    2010
    Abstract
    Dyslipidemia is considered to be one of the main heart risk factors, affecting the endothelial vascular function, which can be non-invasively investigated by ultrasound flow-mediated dilation (US-FMD). However, US-FMD comes at a high-cost and is operator-dependent. In this paper, the effect of dyslipidemia on the photoplethysmogram (PPG) signal recorded from collateral index fingers is investigated following a previous study where it was shown that results similar to that of US-FMD can be replicated by the PPG. Two groups, consisting of 30 healthy subjects free from any risk factors and 30 subjects who have only dyslipidemia as risk factor were respectively considered. The percent change in... 

    Coronary artery disease detection using computational intelligence methods

    , Article Knowledge-Based Systems ; Volume 109 , 2016 , Pages 187-197 ; 09507051 (ISSN) Alizadehsani, R ; Zangooei, M. H ; Hosseini, M. J ; Habibi, J ; Khosravi, A ; Roshanzamir, M ; Khozeimeh, F ; Sarrafzadegan, N ; Nahavandi, S ; Sharif University of Technology
    Elsevier B.V 
    Abstract
    Nowadays, cardiovascular diseases are very common and are one of the main causes of death worldwide. One major type of such diseases is the coronary artery disease (CAD). The best and most accurate method for the diagnosis of CAD is angiography, which has significant complications and costs. Researchers are, therefore, seeking novel modalities for CAD diagnosis via data mining methods. To that end, several algorithms and datasets have been developed. However, a few studies have considered the stenosis of each major coronary artery separately. We attempted to achieve a high rate of accuracy in the diagnosis of the stenosis of each major coronary artery. Analytical methods were used to... 

    Stress analysis of internal carotid artery with low stenosis level: the effect of material model and plaque geometry

    , Article Journal of Mechanics in Medicine and Biology ; Volume 17, Issue 6 , 2017 ; 02195194 (ISSN) Shahidian, A ; Ghorbannia Hassankiadeh, A ; Sharif University of Technology
    Abstract
    Stress concentration in carotid stenosis has been proven to assist plaque morphology in disease diagnosis and vulnerability. This work focuses on numerical analysis of stress and strain distribution in the cross-section of internal carotid artery using a 2D structure-only method. The influence of four different idealized plaque geometries (circle, ellipse, oval and wedge) is investigated. Numerical simulations are implemented utilizing linear elastic model along with four hyperelastic constitutive laws named neo-Hookean, Ogden, Yeoh and Mooney-Rivlin. Each case is compared to the real geometry. Results show significant strength of oval and wedged geometries in predicting stress and strain... 

    High precision invasive FFR, low-cost invasive iFR, or non-invasive CFR?: optimum assessment of coronary artery stenosis based on the patient-specific computational models

    , Article International Journal for Numerical Methods in Biomedical Engineering ; Volume 36, Issue 10 , 2020 Tajeddini, F ; Nikmaneshi, M. R ; Firoozabadi, B ; Pakravan, H. A ; Ahmadi Tafti, S. H ; Afshin, H ; Sharif University of Technology
    Wiley-Blackwell  2020
    Abstract
    The objective of this paper is to apply computational fluid dynamic (CFD) as a complementary tool for clinical tests to not only predict the present and future status of left coronary artery stenosis but also to evaluate some clinical hypotheses. In order to assess the present status of the coronary artery stenosis severity, and thereby selecting the most appropriate type of treatment for each patient, fractional flow reserve (FFR), instantaneous wave free-ratio (iFR), and coronary flow reserve (CFR) are calculated. To examine FFR, iFR, and CFR results, the effect of geometric features of stenoses, including diameter reduction (%), lesion length (LL), and minimum lumen diameter (MLD), is...